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Abstract 

Virtualization is a technique used to model and simulate the cyber domain, as well as 

train and educate. Different types of virtualization techniques exist that each support a 

unique set of benefits and requirements. This research proposes a novel design that 

incorporates host and network virtualization concepts for a cyber warfare training 

platform. At the host level, hybrid virtualization combines full and operating system 

virtualization techniques in order to leverage the benefits and minimize the drawbacks of 

each individual technique. Network virtualization allows virtual machines to connect in 

flexible topologies, but it also incurs additional processing overhead. 

 

Quantitative analysis falls into two sets of experiments. The first set of experiments 

evaluates traditional virtualization techniques against the hybrid approach. Results 

indicate that in some cases, performance of hybrid virtualization exceeds that of full 

virtualization alone while still providing an identical feature set. The second set of 

experiments examines the amount of overhead involved with network virtualization with 

respect to bandwidth and latency. Results indicate that performance over a local area 

network incurs two to four times the performance cost compared to physical connections. 

The benefit of this additional overhead is an increased flexibility in defining network 

topologies at the software level independent of the underlying physical topology. 
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DEVELOPING A HYBRID VIRTUALIZATION PLATFORM DESIGN FOR CYBER 

WARFARE TRAINING AND EDUCATION 

 
 
 

I. Introduction 

Know your enemy and know yourself; in a hundred battles you will never 
be in peril. . . . If ignorant of your enemy and of yourself you are certain in 
every battle to be in peril. -Sun Tzu 

 

ver the last few decades, the worlds of computer networks and information 

security have converged to create a fast moving and incredibly dynamic 

warfighting domain. United States Air Force leaders have recognized the importance of 

training and equipping airmen to effectively fight and win in this modern battlefield [1]. 

In a joint Letter to Airmen, Air Force Secretary Michael B. Donley and Air Force Chief 

of Staff Gen. Norton Schwartz state that the fight to secure cyberspace is vital to current 

conflicts as well as a critical component to maintaining a technological advantage over 

future adversaries. They conclude the letter by stating that all Airmen share responsibility 

to fight in this “mission-critical domain” so that the broader Air Force mission can be 

carried out. [2] 

1.1. Research Motivation 

1.1.1 In order to carry out the charge by Air Force leadership to train Airmen to 

fight effectively in the cyber domain, it is important that the proper technologies exist to 

O
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allow for realistic training environments. Training warriors in realistic battlefield 

environments has long been a tenet of military practice. Undergraduate pilots spend hours 

in flight simulators designed to recreate the instrumentation and performance 

characteristics of their aircraft. The Army has invested funds into realistic gaming 

environments to increase the ability of soldiers to work cooperatively in teams to prepare 

them for actual combat situations [3]. The cyber domain is no different. If cyber warriors 

wish to attack, defend and exploit information systems it is critical that they have realistic 

environments in which to conduct training. This research is focused on what technologies 

exist to create the realistic training in the cyber domain. 

1.2. Overview and Goals 

1.2.1 There are essentially two predominant methods to modeling the cyber 

domain in order to conduct training: duplication and virtualization. Duplication refers to 

the physical duplication of operational equipment for the purposes of training. Although 

this provides a very close approximation to actual operational conditions, the monetary, 

time and manpower investments can limit the number of training ranges available to 

Airmen [4]. The other method is virtualization. Virtualization allows some types of 

operational networking equipment (such as desktops, servers, routers, switches, hubs) to 

be simulated inside a computer system. Since the computing requirements of some of 

these components are far less than the computation capability of modern systems, a 

virtual environment can provide an efficient method of recreating virtualized computer 

networks on a smaller set of physical machines [5, 6, 7, 8]. 
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1.2.2 Many education institutions that teach courses in network security and 

computer system administration have leveraged virtualization technology to provide 

hands-on laboratories for their students [9, 6, 10, 11, 12]. However, there exist a wide 

variety of virtualization techniques for enabling these types of research laboratories. Each 

technique comes with its own set of strengths and weaknesses. In general terms, 

virtualization techniques fall into two broad categories. Some techniques can provide 

high density at the cost of platform flexibility. In other words, the technology supports 

very lightweight virtual machines but they all have to be of the same type. On the other 

hand, other virtualization technologies provide platform flexibility at the cost of high 

resource consumption. These heavyweight virtual machines can run a variety of operating 

system types, but require more dedicated resources to accomplish the task. Traditionally, 

educational institutions that have developed hands-on laboratories based on virtualization 

technology have chosen one specific virtualization technology over another based on 

their needs and educational goals [11, 13]. 

1.2.3 The purpose of this research is to examine ways in which lightweight and 

heavyweight virtualization may be combined in order to leverage the strengths of both. 

The research examines which heavyweight and lightweight virtualization technologies 

are the most compatible and effective when combined on the same physical platform. The 

research also investigates the performance characteristics of the hybrid virtualization 

platform when compared against traditional virtualization techniques. This data could 

then be used in future research to determine which solution to adopt in the development 

of a training platform. 
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1.2.4 The research also examines the role of network based virtualization 

techniques in building a cyber warfare education and training platform. The specific 

focus of research is on an implementation of a peer to peer virtual private network 

solution called N2N. This research conducts both latency and bandwidth benchmarks in 

environments both with and without network virtualization. The experiments show that 

there is about a two to four times slowdown in the latency and bandwidth connection 

capability under network virtualization. The benefit of network virtualization is that it 

allows machines to connect and form arbitrary network topologies regardless of the 

underlying physical topology. The use of network virtualization depends on the 

application but if the amount of overhead is tolerable serves as a viable approach for a 

cyber warfare training platform. 

1.3. Thesis Layout 

1.3.1 Figure 1 presents a conceptual roadmap for the research presented in this 

thesis. The problem space is defined through the presentation of the state of the art in 

virtualization and education. The analysis of virtualization in education leads to a design 

approach that seeks to improve the state of the art through host and network based 

virtualization methods. For each of these methods, a set of experiments help to validate 

the assumptions made in the proposed solution. Each of these parts contribute towards 

taking the role of virtualization a step forward in developing a training and education 

platform for cyber warfare. 
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Figure 1: Research roadmap that outlines the layout of this thesis 
 
 

1.3.2 This thesis is divided into a number of chapters. The following sections 

provide a summary of the contents of each chapter. Chapter II discusses background 

research related to virtualization technology. Chapter III analyzes the state of the art in 

virtualization based network security laboratories and introduces a hybrid virtualization 

platform that seeks to improve performance over current methods. Chapter IV describes 

the methodology for characterizing the performance of the hybrid virtualization platform, 

the results of which are presented in Chapter V. Finally, Chapter VI summarizes the 

research and provides conclusions and recommendations for future work in this area. 

1.3.3 Chapter II Virtualization Literature Review provides important 

background information on key virtualization concepts. These concepts are critical to 

understanding the research discussed throughout this thesis. The chapter covers the 

history and issues relating to virtualization on the x86 platform. The chapter discusses 

key virtualization techniques such as full virtualization, paravirtualization, container-
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based virtualization and ported virtualization. The chapter describes the specific 

technologies that exist for each type of virtualization, with a focus applied to technologies 

that exist as open source products or are freely available for educational use. Finally, the 

chapter concludes with a discussion of relevant technologies in network virtualization. 

1.3.4 Chapter III Virtualization in Network Security Education examines current 

implementations of virtualization technology used to create hands-on educational or 

training environments. Although a large number of projects exist throughout academia, 

the list has been narrowed down to a handful of representative examples. At least one 

project represents each type of virtualization technology discussed in Chapter II. Finally, 

the chapter introduces the concept of a hybrid virtualization platform and compares the 

capabilities of such a platform against traditional virtualization solutions with regards to 

the requirements established in this chapter. 

1.3.5 Chapter IV Methodology describes the experimental setups this research 

uses to determine the performance characteristics of both host and network based 

virtualization. This chapter outlines the set of experiment parameters, design 

considerations and hardware for the experiments. The host based experiments run a set of 

benchmarks inside virtual machines that use traditional virtualization techniques as well 

as the hybrid technique described in Chapter III. The network virtualization experiments 

use the network virtualization tool N2N and compares the performance against a baseline 

physical network connection. 

1.3.6 Chapter V Results presents the results from the experiments described in 

Chapter IV. The host based experiments show that in some of the benchmarks, 
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performance is very similar amongst the different hypervisor platforms. The Compile 

Apache benchmark shows the greatest amount of difference in performance. In this case 

the hybrid approach presents performance characteristics that fall in between the 

performance profiles of its full and operating system virtualization components. This 

demonstrates that the hybrid approach is capable of performance that exceeds that of full 

virtualization alone while still providing the capability to support multiple guest 

operating systems. The network virtualization experiments show that network 

virtualization incurs an approximate two to three times slowdown in performance relative 

to direct physical connections. 

1.3.7 Chapter VI Conclusions and Recommendations  provides a final 

commentary on the research presented in this thesis. Although hybrid virtualization 

demonstrated the ability to provide improved performance compared to full virtualization 

alone, it is not without its drawbacks. Practical experience with the platform suggests that 

other instabilities might be introduced into the system by running two hypervisors on the 

same system. The data from Chapter V also suggests that many tasks might not 

experience any performance benefit from this configuration. Instead it is recommended 

that the granularity of hypervisor diversity remains at the network level and that a hybrid 

approach focus on the network virtualization component of a cyber warfare training 

platform. Network virtualization would allow virtual machines from different hypervisors 

to connect seamlessly. This network approach of hybrid virtualization allows the 

flexibility of multiple hypervisors and provides the basis for a realistic cyber warfare 

training and education environment.  
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II. Virtualization Literature Review 

irtualization technology has been around for several decades now. While its first 

use dates back to the IBM mainframes of the 1960s, the dramatic increase in 

performance of desktop computers over the last decade has pushed this technology into 

mainstream desktop computing [14, 15]. It has also begun to reshape the way data centers 

and other types of information technology centers manage their network and computing 

resources. This recent surge of technology innovation in virtualization technology, 

specifically in the area of desktop computing, has spurred on a variety of interesting 

applications of virtualization technology [7]. While new and quickly emerging 

technologies open new doors and create new possibilities, it also becomes difficult to 

keep up with the rapid pace of development. It is important to carefully examine ways in 

which virtualization may be correctly utilized in order to support national cyberspace 

objectives [1]. 

2.1. Overview 

2.1.1 This chapter divides background information into three broad categories 

that are necessary in order to understand the concepts explained throughout this thesis. 

The first topic deals with the technical aspects of virtualization technology and examines 

the wide array of tools and concepts in this domain. The idea of virtualization in 

computing is broad and there are a wide range of techniques and technologies that have 

been developed to address different areas of virtualization. This report specifically targets 

virtualization techniques and technologies in the realm of what is referred to as platform 

virtualization. Key techniques in this area discussed in this chapter include 

V
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paravirtualization, full virtualization and container-based or operating system 

virtualization. 

2.1.2 The second part of this chapter is dedicated to the specific products that 

are representative of each virtualization technique. The focus of this research is on 

technologies that are available under open source licenses or that are at least available 

freely to educational institutions for academic purposes. The purpose of this qualification 

is to provide a platform that can leverage the knowledge base already available at 

educational institutions.  

2.1.3  The final section provides a brief discussion on the topic of network 

virtualization. These are frameworks that have been developed to facilitate the creation of 

large virtual networks or to otherwise control and manage virtualization technology. 

Although there are large number of techniques available to virtualize the network layer 

[16, 17, 18, 19], the focus of this research is on peer to peer virtual private networks. This 

section gives a brief introduction to the concept of virtual private networks and how 

centralized models differ from peer based or decentralized models. 

2.2. Introduction to Virtualization 

2.2.1 Virtualization has started to become a commonplace word in modern day 

information technology circles. The term itself is actually a bit vague as it can be used to 

describe a very broad range of concepts in computer science. One way to define 

virtualization is to think of it in terms of abstracting and separating a service request from 

the physical delivery of that service [20]. Virtualizing something on a computer system 

refers to taking an object, system or capability and simulating its effect without 
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necessarily physically replicating the original object. In this sense, as long as the service 

is provided, the underlying mechanism for providing that service can change. A virtual 

memory system is one common example of this type of abstraction. Operating systems 

use hard disk swap space to virtualize the effect of having a full address space of physical 

memory. Another popular example is when multiple physical storage devices are 

virtualized (for example by a Redundant Array of Independent Disks or RAID system) 

and effectively appear to the operating system as one logical drive. 

2.3. Definition of Terms 

2.3.1 Since virtualization has branched off in several different types of 

technologies and approaches, the terminology has branched along with it. However, each 

branch of virtualization tends to share the same core set of concepts albeit in different 

terms. In order to maintain consistency in this document, the following terms provide a 

common language to describe the different types of virtualization. 

 Hypervisor 

Within the context of this research, the term hypervisor refers to the primary 

entity that provides the abstractions necessary for virtualization to occur. The 

mechanism that provides this abstraction changes from technology to technology. 

It can exist at the hardware level (hardware assist), at the operating system level 

(container and full virtualization), or can even be the operating system itself 

(ported paravirtualization). Some consider hypervisors that execute as the primary 

control software on a physical machine to be Type I hypervisors or bare-metal 

hypervisors. This is to indicate that the hypervisor runs directly on the CPU. Type 
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II or hosted hypervisors run as an application under the control of a main 

operating system [21]. In literature, this abstraction mechanism is sometimes 

referred to as a virtual machine monitor.  

 Kernel 

The kernel is the core scheduling and resource management component of an 

operating system. The kernel software schedules the processors time amongst the 

various user processes on the system, manages memory, and arbitrates access to 

system peripherals. When a computer system is booted, the kernel is one of first 

pieces of software to run on the system and generally occupies a privileged state 

on the processor in order to execute its management functionality. 

 Host 

The host refers to the underlying physical hardware system. Typically this refers 

to a complete computer system including processor, memory, display and any 

required peripherals. Physical hosts can range from laptops and desktop machines 

to high performance rack-mounted and clustered servers. 

 Guest 

The guest refers to the virtualized system that runs on top of a physical hardware 

system. This virtual machine is the abstracted representation of a computer system 

provided by the hypervisor. The underlying virtualization technology determines 

what type of guests may run on certain host operating systems and hardware. 
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2.4. Virtualization Techniques 

2.4.1. Types of Virtualization 

2.4.1.1 One goal of virtualization is to simulate the effect of an entire computer 

system. Although this technique goes by a variety of names, this document refers to this 

process as platform virtualization. A platform in this sense represents a specific computer 

architecture. Examples of computer platforms include Intel's x86, IBM/Motorola 

PowerPC, MIPS or ARM platforms. Platform virtualization (of which the x86 platform is 

perhaps the most popular in the desktop world) falls into roughly three categories: 

emulation/full virtualization, paravirtualization and operating system virtualization.  

2.4.1.2 Emulation generally refers to the process of translating each instruction of 

the emulated platform to equivalent instructions on the host platform. Since this 

translation occurs on every instruction, the emulation overhead can be significant. When 

emulating a platform on top of itself (for example an x86 platform on an x86 processor), 

the hardware can execute the majority of instructions natively without any translation. 

This is known as full virtualization and can result in almost near native performance. 

With paravirtualization, a modified guest operating system kernel communicates directly 

with the hypervisor in order to minimize the performance penalty of virtualizing system 

calls. Operating system virtualization uses a shared system kernel to isolate and manage 

resources in such as way that special user processes can be made to act like independent 

machines. Since all virtual machines share the same system kernel, this means that all 

virtual machines must run the same operating system (e.g., Linux on Linux, Windows on 
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Windows). The following sections provide more detail each of these types of platform 

virtualization. 

2.4.2. Full Virtualization 

2.4.2.1 Due to the limitations of the x86 design with regards to virtualization and 

the low demand for virtual machine technology on the desktop through the 1970s and 

1980s, virtualization on the desktop did not progress. During the 1990s, however, desktop 

hardware became more powerful and underutilized, causing resurgence in research into 

virtualization as a form of server consolidation [7, 22]. 

2.4.2.2 In 1998, researchers at Stanford researchers found a way to fully virtualize 

the x86 platform [20]. The name full virtualization is due to the way that the hypervisor 

presents a full abstraction of an x86 hardware system to the virtual machine environment. 

This includes a virtual memory system, virtual CPU, virtual hard disk, virtual console and 

any other hardware devices. These resources are presented in a way such that the 

software that executes on top of this abstracted system is generally unaware that the 

virtual hardware is actually provided by a software hypervisor. The method of dynamic 

binary translation and direct execution allow the virtual machine to run the majority of 

code natively without any intervention by the hypervisor. Finally, since the hypervisor 

presents the entire software interface of virtual hardware to the virtual machine, it is able 

to mediate all access to physical resources such as CPU, memory and I/O devices. By 

satisfying these conditions described in Appendix A, the x86 platform became a viable 

option for virtualization.  
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2.4.2.3 Dynamic Binary Translation and Direct Execution are two methods that 

have been developed to get around virtualization problems associated with the original 

x86 design. When Popek and Goldberg defined the requirements for a processor to 

support virtualization, they provided two classifications of instructions [5, 23]. Privileged 

instructions are instructions that require the processor to be in the appropriate privilege 

level for interacting with hardware. Sensitive instructions are those that affect the state of 

the hardware (or the hypervisor if the processor is virtualized). In full virtualization, the 

guest operating system runs at an unprivileged level. When the guest operating system 

executes a privileged instruction, that instruction causes a security exception to occur. At 

this point the hypervisor which runs at a higher privilege level steps in and manipulates 

the virtual hardware to provide the illusion to the guest operating system that it has 

executed a privileged instruction on real hardware. This intervention process is called a 

trap. In order to meet the Popek and Goldberg virtualization requirements, all sensitive 

instructions must trap into the hypervisor [5, 23]. 

2.4.2.4 The problem on the x86 platform is that not all sensitive x86 instructions 

are privileged. This means that there are instructions that affect the hardware that do not 

invoke the security exception process described above. There are in fact 17 such 

instructions in the x86 instruction set [5]. Dynamic binary translation scans at runtime the 

code the guest kernel is about to execute, looking for these problem instructions. The 

code is then dynamically patched with instructions that explicitly call into the hypervisor 

in order to handle the privileged instruction. Direct execution simply refers to the idea 

that the vast majority of guest kernel and user code may execute directly on the processor 
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without any intervention from the hypervisor [14, 23]. This direct execution of 

instructions is what allows for almost native speed of the guest operating system. Figure 

2 provides an illustration of how full virtualization fits in with the host kernel, hardware 

and guest operating systems. 

  

Figure 2: Program execution layout when using full virtualization 

2.4.3. Hardware Assist with Virtualization Extensions 

2.4.3.1 Due to the high demand for efficient virtualization capability for the x86 

platform, both Intel and AMD have developed extensions to the x86 instruction set that 

satisfy the virtualization requirements established by Popek and Goldberg. The 

extensions work by providing two additional modes. These are referred to as root and 

non-root privilege modes. With hardware assist, the guest operating system runs in the 

unprivileged non-root mode and the hypervisor runs in the privileged root mode. Each 

mode has its own set of ring levels 0 through 3. This means the guest operating system 

code runs at ring 0 in the non-root mode and the hypervisor runs at ring 0 in the root 

mode. Whenever code in the unprivileged non-root mode attempts to execute privileged 
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instructions (even code running in non-root ring 0), the hypervisor can now properly trap 

the instruction and provide the necessary virtualization capability [20].Figure 3 illustrates 

how the root and non-root privilege levels interact to force guest operating system calls to 

trap into the hypervisor. 

 

Figure 3: Hardware assist flow of execution 
 

2.4.3.2 When the first generation of the hardware assist feature was released, the 

programming model forced a significant amount of traps into the root mode hypervisor. 

The context switch costs that occurred to handle the change in modes introduced 

significant overhead. The overhead was substantial enough that traditional methods such 

as dynamic binary translation and direct execution outperformed the virtualization 

capabilities of hardware assist [20]. As the extensions have matured, the efficiencies in 

the memory management capabilities and reduction in context switching have improved 
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performance to the point where hardware assist is a viable method of providing full 

virtualization capability. 

2.4.4. Paravirtualization 

2.4.4.1 One of the major drawbacks to the traditional methods used to implement 

full virtualization is the high overhead costs in processing system calls and trapping 

problem privileged instructions. Paravirtualization is one method that attempts to reduce 

this virtualization overhead by integrating the system call process into the virtualization 

layer [24]. Traditionally this is done by modifying the system call code directly in the 

guest operating system. These modified system calls are referred to as hypercalls. 

Hypercalls call directly into the virtualization layer, which runs at a higher privilege level 

than the guest operating system. Additionally on difficult to virtualize platforms such as 

the x86, privileged instructions in the guest kernel that do not trap properly must also be 

replaced with hypercalls into the hypervisor. Since these hypercalls are designed 

specifically to bypass the overhead required to virtualize traditional system calls and 

privileged instructions, some performance gains can be seen when compared to full 

virtualization techniques depending on the workload [20]. Figure 4 illustrates where the 

different components of paravirtualization fit into the x86 security model. 
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Figure 4: Program execution layout when using traditional paravirtualization 
 

2.4.4.2 There is a unique twist to traditional paravirtualization that focuses on the 

hardware abstraction layer code of the guest operating system rather than the system call 

interface. Some operating system designs can be broken down into two main parts. A 

large top layer contains hardware independent code for performing the operating system 

responsibilities. A smaller layer of code executes between this top layer and the actual 

hardware and contains hardware specific code that interfaces the hardware to the rest of 

the operating system. Although there is not a standardized name for this technique, this 

document refers to this method of virtualization as ported paravirtualization. 

2.4.4.3 The advantage to abstracting out the hardware specific code is that it 

becomes easier to port the operating systems to run on many types of hardware platforms 

by only re-implementing the hardware specific code. This is what allows some operating 

systems like Linux to run on a large variety of hardware platforms. In this type of design, 

it is possible to port Linux to run on top of a software based system instead of a new 

hardware system. As long as software exists to virtualize the behavior of the underlying 
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hardware, the new hardware (and in this case software) abstraction layer can work with 

the virtualization software to run the rest of the guest operating system unmodified [25]. 

2.4.5. Container Virtualization 

2.4.5.1 Container virtualization is a type of virtualization that provides a high 

density of guest operating systems by implementing the virtualization layer inside the 

host kernel [26]. The host kernel then becomes responsible for creating different 

execution environments that are able to act independent of one another. Each of these 

execution environments is referred to as a container or sometimes as a virtual private 

server. In these separate containers is where the guest user applications execute. Each 

guest container shares the kernel. This provides the ability to dramatically reduce the 

resource requirements of each container since an entire hardware system does not need to 

be virtualized and the kernel can more finely control the resources allocated to the 

containers. Since the host kernel is shared amongst the guest containers, each container 

must essentially run the same operating system. The kernel is responsible for making sure 

that each container cannot interfere with the execution of other containers on the same 

system. Figure 5 illustrates the execution environment that exists under container 

virtualization along with the mapping to the x86 security model. 
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Figure 5: Execution layout for container virtualization 
 

2.5. Virtualization Technologies 

2.5.1. Kernel Virtual Machine (KVM) 

2.5.1.1 The Kernel Virtual Machine is a hypervisor that has been developed to 

take advantage of the hardware extensions now available on the x86 platform [27]. It is a 

loadable module for the Linux kernel that allows the Linux kernel to use the processor 

virtualization extensions. KVM adds this functionality by running the guest kernel and 

user level processes in the non-root execution rings. Since it is a module loaded into the 

Linux kernel, KVM itself runs in the privileged root mode and traps the appropriate 

instructions from the guest machine. KVM leverages the emulated I/O devices already 

developed in x86 emulation software QEMU to provide virtual devices such as hard disks 

and memory to the virtual machine. Since KVM leverages the features found in both the 

Linux kernel (scheduling, memory management, device drivers) as well as the 

virtualization capability found in the Hardware Assist extensions, the code base is 

relatively small (approximately 10,000 lines) [28]. 
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2.5.2. VMware 

2.5.2.1 VMware was one of the first companies to bring a successful 

virtualization product to the x86 desktop market. Today they are a powerful player in 

both user and enterprise level virtualization products. Much of VMware's technology is 

built on the concepts of dynamic binary translation and direct execution. Their products 

vary according to features, cost and support options. The following list summarizes the 

most important products [20]. 

 VMware Player 

VMware Player is a free application that has the least amount of functionality. It 

allows users to run VMware virtual machines created with other VMware utilities. 

 VMware Server 

VMware Server is a free application that provides additional features that 

VMware Player does not have. Users can create new virtual machines and 

manage them through a web access system. It installs as an application on top of 

one of the supported operating systems (Windows or Linux). 

 VMware Workstation 

VMware Workstation is a commercial (free for educational use) application that 

is targeted toward creation of virtual machines on the desktop. It supports 

managed snapshots of virtual machines, the ability to clone virtual machines as 

well as complex network configurations for connecting multiple virtual machines. 

 VMware ESX/ESXi 

VMware ESX is a bare-metal hypervisor intended for use in VMware's enterprise 
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management solutions. It runs directly on the server hardware and most of the 

management functionality is implemented in VMware’s other enterprise software. 

2.5.3. VirtualBox 

2.5.3.1 VirtualBox is an open-source full virtualization solution, originally 

developed by the German company Innotek and later acquired by Sun in 2008 [29]. Sun 

was then later acquired by Oracle in 2009 [30]. VirtualBox relies on the same general 

techniques as VMware products to provide full virtualization capability. It is capable of 

software only virtualization through dynamic code recompilation techniques, some of 

which is based on QEMU source code. VirtualBox is also capable of leveraging 

virtualization enabled hardware such as Intel VT or AMD-V. VirtualBox is packaged in 

two different ways. Most of the software is licensed under the GNU Public License and 

available as open source software. Oracle also maintains a free (for personal and 

academic evaluation), but closed source version which has a few additional features such 

as the ability to support USB be devices both locally and remotely. The closed version 

also provides the capability to manage the machine remotely through the Remote 

Desktop Protocol [31]. 

2.5.4. Xen 

2.5.4.1 Xen is an open source paravirtualization product licensed under the GNU 

Public License [24]. Older versions of Xen could only support guest operating systems 

whose source was available due to the need to add the hypercall interface. This would 

typically narrow the range of available operating systems to Linux, BSD, Solaris and 

other UNIX-like operating systems. Recently with the advancement of hardware assist 
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technology, Xen has been updated to use virtualization extensions to provide support for 

unmodified guest operating systems through full virtualization techniques. 

2.5.4.2 Xen is a modified version of the Linux kernel that runs as a virtualization 

layer next to the hardware. In Xen terms, operating systems are referred to as domains. 

The first domain that is created when Xen begins life is called Domain 0 or Dom0. This 

first domain maintains a special privileged state within Xen and is responsible for 

arbitrating access to all the system devices on the hardware. So it is important the Dom0 

system have all the proper drivers for the host hardware. The kernel for the Dom0 domain 

must be modified to work with the Xen hypervisor which is sitting between the Dom0 

domain and the hardware. Once the Dom0 domain is running, additional guest domains 

(or DomU in Xen terms) may be started. DomU guest kernels require different 

modifications for running on the hypervisor than the DomU domain requires. Their 

modifications represent the typical paravirtualization modifications described in section 

2.4.4. 

2.5.5. Linux VServer and OpenVZ 

2.5.5.1 Linux VServer and OpenVZ are two popular container virtualization 

technologies available for the Linux operating system [32, 33]. Both software packages 

work by modifying the original Linux kernel to add the functionality necessary to allow 

container virtualization to occur. These modifications enable the strict isolation of 

different containers in terms of memory allocation, CPU usage and network utilization 

among other criteria. Both of these software packages also provide userspace utilities that 

allow the user to manage the containers. Management functionality allows for the fine 
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grained control of the execution environment of a container. For example, a container 

may be restricted to only use 5% of the total CPU capability of the host CPU. This 

becomes useful in network security for training denial of service techniques. A denial of 

service attack may be launched against a container which from the perspective of the 

container may consume 100% of the CPU. However, on the host this container is only 

utilizing 5% of the total CPU capability and so the host is able to continue to execute the 

other containers at their regular capacity. 

2.5.6. User Mode Linux 

2.5.6.1 User Mode Linux is a port of the Linux kernel to run on top of itself as the 

virtualized hardware platform [25]. It allows the Linux kernel to run as a userspace 

application with Linux operating system acting as a hypervisor. This is considered to be a 

type of paravirtualization. It is developed and maintained by Jeff Dike and was first 

documented in 2001. Originally a patch for the Linux kernel, it has since been integrated 

into the main development tree for recent versions of the Linux kernel. 

2.6. Supporting Technologies 

2.6.1. Libvirt 

2.6.1.1 Libvirt is an application programming interface toolkit for the Linux 

operating system that allows generic management of different virtualization technologies 

without the need to customize the code to each type of hypervisor available [34]. Instead 

it abstracts the general functionality available with virtualization techniques and provides 

a public coding interface. This public interface connects to a variety of backend 
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hypervisor drivers that implement the functionality according to the requirements of the 

desired hypervisor. The following lists the hypervisors supported by Libvirt: 

 Xen 

 QEMU 

 Linux Containers (LXC) 

 OpenVZ 

 VirtualBox 

 OpenNebula 

 VMware ESX 

 

2.7. Network Virtualization 

2.7.1. Introduction 

2.7.1.1 Network virtualization is a method of creating independent network 

topologies as an additional layer on top of the current underlying network architecture. 

The public Internet is a popular base network architecture that forms a baseline 

infrastructure for a wide array of network virtualization techniques. The Internet provides 

a high-speed, global network due to its large scale adoption and popularity. The 

architecture of the Internet provides a natural layering approach that allows protocols and 

applications to function independently of the layer below. Network virtualization works 

within this layering approach to provide top level applications the ability to work with the 

network independent of the actual underlying physical topology. 
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2.7.2. Virtual Distributed Ethernet (VDE) 

2.7.2.1 Virtual Distributed Ethernet (VDE) is an abstraction of the networking 

components involved in a typical Ethernet network [18]. It allows for virtual machines to 

connect to physical machines in arbitrary network topologies. VDE provides virtual 

switches and hubs and allows the network adapters of physical machines as well as 

virtual network adapters of virtual machines to connect to them. Since these networking 

components are implemented in software, it allows for a great deal of flexibility in 

implementing arbitrary network topologies for a virtual environment. 

2.7.3. Virtual Private Networks 

2.7.3.1 Many techniques for providing network virtualization exist. Virtual 

Private Networking (VPN) is one popular network virtualization technique. The primary 

purpose of VPNs is to allow the establishment of secure connections between trusted 

peers on a network. Generally these connections form in such a way as to allow high 

level network applications to behave as though the other peers in the VPN have 

connected to the same physical network. In actuality, these peers may be separated by 

thousands of miles across a complex mesh of networking equipment and interconnection 

technologies. VPNs usually provide some type of encryption support in order to establish 

secure tunnels over insecure mediums such as the public Internet [35, 36]. 

2.7.3.2 Many VPN solutions work in a centralized model [36]. Centralized VPNs 

provide the ability to centrally control and administer the VPN. Clients that wish to 

connect to the VPN establish a connection to a VPN server. The VPN server acts as a 

central location for configuration and administration of the VPN. The client authenticates 
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to the server and in turn the server may authenticate to the client depending on the 

security requirements of the VPN. Once the client establishes a secure connection to the 

VPN server, the VPN server acts as a central point of contact for client communication. 

In a centralized model, packets destined for other clients must travel through the VPN 

server in order to properly route through the VPN. As the size the VPN scales, it is 

necessary that the VPN server has sufficient network bandwidth and computation power 

to handle the large flow of packets that must traverse the VPN. 

2.7.3.3 Some VPNs utilized a decentralized or peer to peer (P2P) model [37, 38, 

39]. There are a wide variety of techniques for implementing this type of approach. 

However, most P2P VPNs share some common characteristics. Generally in a P2P VPN, 

the VPN clients also play the role of VPN server. The first issue to tackle in a P2P VPN 

is how to initially discover and connect to other peers in the network. Each P2P VPN 

solution tends to approach this problem differently. Some approaches such as N2N rely 

on special peers to keep lists of the peers that are connected to the network [40]. Other 

techniques rely on techniques such as distributed hash tables borrowed from other P2P 

technologies [39, 41]. Although discovery approaches differ, the common thread among 

P2P VPNs is that after discovery the peers make direct connections to each other. This is 

opposed to the centralized approach where the clients route their traffic through a 

common central server. A decentralized approach provides the ability to create large, 

scalable networks that are free from tedious central configuration and administration. 
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III. Virtualization in Network Security Education 

s techniques and technologies have matured over the last two decades, 

researchers in academia have leveraged virtualization in order to create hands-on 

laboratories for students in courses in computer administration, network administrator 

and network security. This first half of this chapter documents various projects that are 

representative of the major categories of virtualization. Collectively, these projects give 

insight into the current state of the art with regards to the use of virtualization in teaching 

computer administration and networking courses. The analysis of current methods gives 

insight into a solution to improve the state of the art of virtualization in education. This 

solution is presented in the second half of this chapter. The techniques of hybrid 

virtualization along with network virtualization via peer to peer virtual private networks 

form the basis of a proposed platform for conducting cyber warfare education and 

training. The chapter concludes with the details of the proposed design. 

3.1. Full Virtualization Based 

3.1.1. Advantages of Full Virtualization in Education 

3.1.1.1 The use of full virtualization is a popular option for many educators 

teaching computer administration courses [9, 10, 13, 42]. Full virtualization gives the 

flexibility to run multiple types of operating systems. It also allows students to have the 

flexibility to store their virtual machines on portable storage. This allows students to 

work in a lab environment without being tied to specific machine. It also allows students 

to take their virtual machines to their own personal computers, provided they are capable 

of running resource intensive full virtual machines.  

A
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3.1.2. Cyber Defense Exercise (CDX) 

3.1.1 The Cyber Defense Exercise (CDX) is an annual cyber warfare event 

sponsored by the United States National Security Agency (NSA) [43]. The exercise is 

geared toward the five undergraduate military academies and awards the coveted CDX 

trophy each year to the team that most successfully defends a custom built network 

during a one week engagement by NSA attack team personnel. Although not in 

competition for the trophy, the military graduate institutions Naval Postgraduate School 

and the Air Force Institute of Technology (AFIT) also participate in the exercise. AFIT 

dedicates a two quarter course to preparation for the exercise. Full virtualization plays a 

dominant role in the construction of the AFIT network that needs to support a variety of 

services including email, instant messaging, web servers and databases. Full 

virtualization is implemented using VMware Workstation. 

3.2. Paravirtualization Based 

3.2.1. Types of Paravirtualization Laboratories 

3.2.1.1 When flexibility of guest operating system is not a fixed requirement, 

paravirtualization becomes a very popular choice for researchers building virtual network 

environments [44, 45]. Mature utilities exist for the scripted creation of paravirtualization 

based networks that range in size from one node up to several hundred. In the 

paravirtualization world, there are two major players: Xen and User Mode Linux. 

Although both products rely on paravirtualization techniques, there are very different 

with respect to their abilities, requirements, performance and how they have been applied 

in the creation of virtual networking environments. 
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3.2.2. Cyber Defense Trainer (CYDEST) 

3.2.2.1 CYDEST is a project in active development by ATC-NY as part of a small 

business initiative grant from Air Force Research Laboratories [46]. It differs from the 

other projects listed in this research by the fact that its license is not free or open source. 

It is considered Government Off-the-Shelf. This means while it is not available to the 

public at large, it is available to any government organization including the Air Force. 

CYDEST uses both the paravirtualization and full virtualization capabilities of the Xen 

hypervisor. CYDEST provides training scenarios that gives students the opportunities to 

explore realistic scenarios involving computer forensics and cyber warfare.  

 

 

Figure 6: Screenshot showing the network topology for a CYDEST scenario 
 

3.2.3. GINI is not Internet 

3.2.3.1 GINI is not Internet is a project developed at McGill University in 

Calgary, Canada [47]. It uses User Mode Linux as the underlying virtualization platform. 
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GINI. GINI uses a customized UML virtual machine that acts as a common host node. 

The user can define network topologies graphically using the front end interface tools 

shown in Figure 7. This creates an XML description of the network that a backend set of 

software then uses to create the virtual machines and connect the virtual network. 

 

Figure 7: Screenshot showing the network builder tool in GINI 
 

3.3. Container Based 

3.3.1.1 Container based labs have not gained as much traction as full 

virtualization and paravirtualization in the realm of education. This may be due to a 

perceived higher learning curve, ignorance of container virtualization amongst educators 

or perhaps the limitation of operating system choices that containers impose. There are 

systems that demonstrate that container based solutions can form the basis for a virtual 
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network testbed. The Trellis project is a platform for creating virtual networks on 

commodity hardware [16]. It uses two types of container technologies Linux VServer and 

NetNS to form the nodes. It also uses a custom network virtualization system called 

EGRE to provide connectivity between the virtual machines regardless of the physical 

host. Some testing with OpenVZ shows that it can provide the same capabilities and 

performance as the current container technique used in Trellis, but does not integrate with 

the tunneling mechanism that has been developed. 

3.4. Examining Network Laboratories in Education 

3.4.1. Network Laboratory Models 

3.4.1.1 This section presents a survey of the current work related to creating 

hands-on networking environments for students taking courses at the undergraduate level. 

The types of laboratories fall into three main categories: hardware-based labs, 

decentralized labs, and centralized labs. The following sections examine each of these 

categories. 

3.4.2. Hardware Based Labs 

3.4.2.1 Creating a networking lab out of real-world hardware is perhaps the 

closest one can get to achieving realism. Client machines can be automated to present 

realistic traffic representing emails, web surfing, file transfer, peer-to-peer networking, 

and other realistic data. Students have the opportunity to see actual networking hardware, 

such as routers and switches, and experience the issues involved with cable, power, and 

space management. Students also have the opportunity to work with proprietary (yet 

industry standard) network software such as Cisco IOS.  
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3.4.2.2 Although this type of networking laboratory presents the greatest degree 

of realism, it also has some serious drawbacks. Perhaps the biggest drawback is cost. 

Purchasing all the routers, switches, workstations, power supplies, server racks, lab 

space, cabling, and all the follow- on maintenance costs can be a major setback to 

introductory courses that lack an ample supply of funding. There is also the cost of time. 

Often a high level of technical expertise is required to properly configure such a lab 

which can consume precious time needed by professors and graduate students while they 

could be spending their time acquiring more funding for their lab. Another drawback is 

the lack of portability. All the time and effort expended by one team of people to set up a 

lab does not translate well to another team who wants to replicate the results. Of course, a 

roadmap has been laid out and some lessons learned can be documented, but the second 

team still has to put in relatively the same amount of work during implementation as the 

first team. 

3.4.2.3 There are many examples of where this approach has been successful. 

Georgia Tech’s Hands-On Information Security Lab is one example. The infrastructure 

presents three levels of exploitation difficulty consisting of easy, medium, and hard 

(represented by an unprotected internet service provider, a university, and a security-

conscious internet service provider respectively). This setting allows students to progress 

up a chain of complexity, using an increasing skill set to solve more challenging 

problems. The authors of [48] describe how they were able to achieve a certain degree of 

versatility in the network architecture by exploiting the fact that the Cisco hardware used 

to connect the nodes worked at both the Layer-2 and Layer-3 portions of the OSI model. 
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This setup allowed for a virtual rewiring of the routers and switches at the software level 

that quickly and efficiently creates new network topologies. However, the authors 

conclude that the laboratory itself exceeded the infrastructure capabilities of many small 

companies. A consultant from Cisco was even used to help design and implement the 

network. This type of laboratory, although most likely the closest at achieving realistic 

network behavior, might exceed the financial resources of many introductory network 

security classes. 

3.4.3. Decentralized Virtualization 

3.4.3.1 Many instructors of information security courses realize that the time, 

energy, cost, and overall difficulty of implementing and maintaining a full-fledged 

security laboratory is not financially or administratively feasible. These instructors realize 

that much of the functionality required in such a laboratory could be accomplished by 

running virtual machines on top of already existing lab infrastructure. Software such as 

VMware Workstation could be used to produce virtual machines that perform the same 

functionality as operating systems running on real machines. Furthermore, the inherent 

networking capabilities built into these packages make them relatively easy to network 

together when all the host machines are running on the same local area network. Another 

benefit is that already existing computer labs can be used to build these networks. Virtual 

machines also allow for a great deal of robustness. Since virtual machine state can be 

saved, students are free to experiment and potentially break the state of the network. If a 

student does break the network, the student can quickly revert the virtual machine back to 

a known working state. 
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3.4.3.2 There are essentially two models for implementing a decentralized virtual 

network laboratory. Which model is used depends on the desired capability of the 

resulting network. In both cases, the distributed computing power and memory capacity 

of student workstations are used. In the first model, virtual machine images are stored in 

some sort of centralized storage [49]. When the student wishes to begin a specific lab, the 

student retrieves the virtual machine images from the central location to the local 

workstation in the lab. The student then launches these virtual machines on the client 

machine using the target virtualization platform (such as VMware Workstation for 

example). One advantage of this approach is that the physical hardware of the host 

workstations is abstracted away from the virtual machines used in the lab. Another 

advantage is that each student is working on their own set of virtual machines in an 

isolated environment, stabilizing the working environment. However, one disadvantage is 

there can be long delays in copying large virtual machine images across the network for 

each student’s work. Some of this delay can be reduced through the use of linked clones 

as described in [9]. Another disadvantage is that each network is limited in scale to what 

the host workstation can individually support (currently around six virtual machines per 

workstation using full virtualization). 

3.4.3.3 The second model provides for larger scale networks at the cost of 

flexibility [50]. Instead of distributing the same basic set of images to each workstation, a 

larger set of virtual machine images is distributed among a group of workstations. For 

example, imagine the need to simulate a network of 30 nodes, but each individual 

workstation can only run five or six virtual machines simultaneously. The instructor can 
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divide the network into six parts and give one part to each workstation. This has the 

advantage of combining resources to create larger networks. This brings us closer to the 

results of having an actual physical lab. This advantage comes at the cost of complexity 

and flexibility. If the virtual network has a flat topology, the configuration is rather trivial 

as each virtual machine is granted direct access to the LAN. More care must be given 

where broadcast domains within the virtual network must be controlled. Virtual 

Distributed Ethernet (VDE) can help solve some of this complexity by virtualizing the 

data link layer and providing a mechanism to connect virtual machines and physical 

machines to virtual switches and routers [18]. Also, since more than one workstation is 

used, it might be more difficult to schedule individual time for students to work on lab 

assignments. 

3.4.4. Centralized Virtualization 

3.4.4.1 The third model takes a centralized approach to providing a virtual 

network environment. In this model there is typically a central server that hosts all the 

virtual networks for all the students. Although in theory this centralized server could 

support either full virtualization or operating system virtualization, the computing 

capacity of the server relative to the number of virtual machines that required by the 

students lends itself to operating system virtualization. Due to the open nature of the 

Linux operating system and the networking tools available, it is often the platform of 

choice to deliver this type of virtualization. This has the significant disadvantage that 

other operating systems such as Microsoft Windows or any of the other BSD and Unix 

variants cannot be easily integrated into the students’ networks. This tradeoff is made for 
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the advantage that students can log into a central server and create moderately sized 

networks with minimal impact on resource usage on the central server. This is often 

combined with methods that allow students to log in from remote locations off campus, 

allowing a greater amount of freedom and time to work on labs without requiring 

students to be physically present in computer labs on campus. 

3.4.4.2 The central server does not need to be a single machine. A project such as 

SOFTICE [51] uses the Warewulf cluster software to bind several machines into what 

appears as a single logical machine. This model provides the advantage of ease of 

management and allows students easier methods for remote access. In the case of 

SOFTICE, more computational power can be added by adding more machines to the 

cluster. However, there is still a student dependence on a central server and the student 

must have connectivity to this server in order to build and interact with their networks. 

3.5. Summary of Virtualization Techniques and Educational Models 

3.5.1 Table 1 provides a summary of the different approaches taken to providing 

virtualization in an education environment. Each approach comes with its own set of 

advantages and disadvantages that are dictated by the underlying virtualization 

technology and deployment model. Understanding these tradeoffs and benefits helps to 

understand the potential of combining techniques in order to minimize the disadvantages 

of an individual approach. 
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Table 1: Summary of Virtualization Techniques and Educational Models 
Virtualization Category  PROs  CONs 

Physical Hardware Model 
 Most accurate 

representation of target 
environment 

 Executes at native speed 

 Expensive 
 Requires expert level 

maintenance 
 Requires physical 

accommodations such as 
power and floor space 

Full Virtualization 

(VMware, VirtualBox) 

 Supports multiple guest 
operating systems 

 Near native execution 
speed 

 Resource intensive due to 
full virtualization of 
memory and other 
hardware 

Paravirtualization 

(User Mode Linux) 

 Does not require 
modification of host 
system 

 Support built into the 2.6 
line of Linux kernels 

 Mature set of management 
utilities 

 Slower performance than 
Xen paravirtualization or 
container virtualization 

Paravirtualization 

(Xen) 

 Tight integration of guest, 
host and hypervisor leads 
to performance benefits 
and reduced overhead in 
system calls 

 Open source structure has 
given Xen good support in 
the research and academic 
communities 

 Requires source modified 
guest and host systems 
which limits support to 
open source operating 
systems such as Linux 

Container Virtualization 

(Virtuozzo/OpenVZ, Linux 
VServer, Solaris Zones) 

 Most lightweight and 
efficient form of 
virtualization 

 Scalable 

 Requires modification of 
host operating system 

Centralized 
 Easy to centrally configure 

and administer 
 Easy to support remote 

connections 

 Does not scale well 
 Need powerful central 

processing and large 
storage capacity 

Decentralized 
 Scales by distributing the 

computation and storage 
load to the edges of the 
network 

 Depending on the model, 
the power of each 
individual node can 
determine the amount of 
virtualization capable in 
the environment 
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3.6. The Hybrid Approach – A New Model 

3.6.1. Leveraging Multiple Virtualization Technologies 

3.6.1.1 Up to this point, all of the network laboratories implemented with 

virtualization technology have focused on only one type of technology. If the 

requirements for the course dictates that the laboratory support multiple operating 

systems or arbitrary operating systems, the laboratory implementers utilize full 

virtualization (via VMware, Xen, VirtualBox or some other full virtualization solution). 

If heterogeneous or arbitrary operating system support is not a design requirement, 

implementers tend to implement the laboratory using paravirtualization (ala Xen or User 

Mode Linux). If the requirements dictate high density for larger network simulations such 

as modeling virus and botnet behavior, then implementers tend to use a container based 

virtualization solution such as OpenVZ [52]. 

3.6.1.2 The issue with choosing one type of virtualization over another is that 

along with the strengths of one category of virtualization comes along a set of 

weaknesses. Full virtualization provides flexibility at the cost of heavy resource usage. 

Paravirtualization provides slightly better performance at the cost of limited guest 

operating system availability. Containers provide the best resource allocation for the 

highest density of guest machines per physical node, but require each container to run the 

exact same guest kernel which is also shared with the host. 

3.6.1.3 Providing the flexibility of multiple types of guest operating systems while 

simultaneously supporting a higher density of guest machines than traditional full 

virtualization would support is the basis for the idea of the hybrid virtualization 
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technique. Hybrid virtualization combines both lightweight and heavyweight 

virtualization on the same platform in order to leverage the strengths and neutralize the 

weaknesses of either virtualization technique when used alone.  

3.6.2. Example Scenario 

3.6.2.1 Consider an example of a network security training scenario illustrated in 

Figure 8. This network topology represents a typical network that would exist for a small 

business with both a public Internet facing website as well as an internal intranet website. 

This network also maintains databases that provide information to the company’s 

websites as well as applications used by the company employees on their workstations. In 

this example, the company databases hold sensitive corporate information that would be 

valuable to an attacker. 

 

Figure 8: Example realistic network useful for security training 
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3.6.2.2 A viable attack vector exists through the public facing system running 

Microsoft Windows Server 2003 and an Internet Information Services (IIS) web server. 

In order to support this machine in our topology the system must use some flavor of full 

virtualization. From this machine, an attacker can connect to the databases with the 

credentials of the web server. The attacker can now also change information on the 

company intranet web server through an SQL injection technique. Since this attack 

technique does not necessarily depend on a particular implementation, the system can use 

a lightweight virtualization such as paravirtualization or container virtualization. 

Lightweight virtualization can also be used to provide the client workstations with the 

exception of the database administrator. The database administrator runs Microsoft XP 

SP2 as their workstation operating system. The attacker must modify the company 

intranet website to contain malicious code that attacks a known vulnerability in Internet 

Explorer. This allows the attacker to connect to the database with database administrator 

credentials and steal the sensitive information stored there. 

3.6.2.3 Typically, several hardware nodes would be required in order to represent 

the scenario described above [46]. There are situations where it might be convenient for a 

training platform to be able to virtualize the entire scenario on a single machine. For 

example a student may wish to practice certain destructive attack techniques that could 

potentially break the expected network behavior. If this system is shared amongst other 

peers in a classroom environment, this may be problematic for the other students 

attempting to perform their own attacks. If the student maintained their own offline copy 
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of the scenario, this would give the student increased flexibility in how they are able to 

interact with the network. 

3.7. Proposed Hybrid Virtualization Platform Design 

3.7.1 This section proposes a solution to the problem of creating a network 

infrastructure. Specifically, the problem is reducing the virtual network footprint to 

something that the average, modern laptop or desktop can handle. An ideal virtual 

network would provide the same functionality as an equivalent real-life network. In 

guiding the virtualization goals, the system must incorporate the type of components that 

compose real networks. One example is the landscape of what might constitute a typical 

corporate network. This network most likely runs a large variety of software (from 

embedded operating system software for routers to large SQL database software in a 

rack-mount server) on a large number of machines. 

3.7.2 This solution seeks to achieve three main objectives. First, the system 

should support a broad range of unmodified guest operating systems. Second, the system 

should support a large number of nodes in order to provide the capability to simulate 

large, more realistic networks. A realistic goal might be 20-30 nodes per 1 GB of RAM 

available. Finally the system should be portable. To do this, the system uses a building 

block/blueprint model. In terms of cost of moving a solution around, the building blocks 

(virtual machine images) are expensive due to their typically large file size. The 

blueprints should be comparatively much smaller in size and dictate how the building 

blocks should be put together in order to build our network. With this model, our goal is 
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to build a large number of possible network “blueprints” with re-useable building blocks. 

Figure 9 provides a preview of how the layers of our virtualization models fit together. 

 

Figure 9: Layers in the virtualization model 
 

3.7.3 Previous solutions have relied on either full virtualization or operating 

system virtualization. Full virtualization gives us the flexibility to run a large variety of 

guest operating systems, but prevents us from running a large number of them 

concurrently due to the inefficient use of system resources (particularly RAM). Operating 

system virtualization gives us the efficiency to run a large number of nodes per unit of 

RAM, but requires that all guests run the same operating system kernel as the host. 

3.7.4 The solution requires a host operating system that is capable of supporting 

both full virtualization and operating system virtualization. The Linux kernel provides a 

convenient open source solution. Modern versions of the Linux kernel have built-in 

support for KVM hardware-assisted full virtualization. In the case where the host system 
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does not support the Intel VT or AMD SVM virtualization extensions, KVM 

automatically falls back to the slower yet still effective emulation capabilities of QEMU. 

The Linux kernel is also the primary support platform for the OpenVZ project, a 

container based hypervisor. Both of these projects are being integrated into the mainline 

Linux kernel and so it is possible that leveraging both of these technologies will become 

easier. There is already one example of how these technologies can be merged in the 

ProxMox VE product [53]. ProxMox VE uses both full virtualization and operating 

system virtualization, demonstrating that the two virtualization techniques can exist side 

by side. 

3.7.5 Another enabling technology that allows these two types of virtualization 

to be used together is Libvirt. Libvirt is an open source library that provides a common 

set of application programming interfaces (APIs) to different types of virtualization 

technologies. Libvirt can act as a driver for both OpenVZ and KVM/QEMU. This means 

that when in environments that support both of these technologies, the system can use 

Libvirt as another abstraction layer in order to manage the implementation of each virtual 

machine. 

3.7.6 Another possibility for virtualizing the network layer is the use of peer to 

peer-virtual private networking (P2P-VPN) technologies to provide a decentralized 

approach to building virtual networks.  In a traditional centralized virtual private network, 

machines that are connected across a wide area network (WAN) can communicate as if 

they were connected to the same local area network (LAN), similar to the setups used in 

SIMTEX [4] and CDX [43]. The edges of the WAN that wish to connect to the VPN 
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LAN connect to a central server and the clients establish a secure communications 

channel with the central server. When the client wishes to send a packet to another client 

on the same VPN LAN, it sends the packet to the central server which relays it onto its 

destination.  In contrast, a peer to peer approach allows clients to create direct secure 

connections with each other. This approach has the potential to remove the central server 

as a potential bottleneck for network traffic.  It also reduces or possibly eliminates the 

need for a centralized management and authentication system. 

3.7.7 The use of a P2P-VPN allows for a virtual network topology to be defined 

in software regardless of the underlying physical topology.  Therefore, if operating a 

P2P-VPN across a traditional physical network or utilizing for virtual network 

connectivity in the same box, the operating systems are unaware and do not have to be 

modified.  Some P2P-VPN software packages such as N2N [40] allow for VPNs at Layer 

2.  A Layer 2 VPN transports and secures entire network frames.  This is in contrast to a 

Layer 3 VPN such as IPOP [54] that works at the IP transport layer of the TCP/IP stack.  

The benefit of using a Layer 2 solution is that most hypervisors allow some type of 

bridging mechanism from the virtual Ethernet adapter inside the virtual machine to an 

adapter on the host.  This additional level of network layer abstraction allows a software 

defined network topology of virtual machines to be connected together regardless of 

hypervisor or physical location of the host.  This feature provides a great deal of 

flexibility when building training ranges in terms of scale of the range as well as the 

physical location of the end nodes (i.e., the students). 
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3.7.8 While the initial goal of this concept is to provide a stand-alone platform 

to train and educate cyber technologies, it may also provide long term additional 

capabilities by allowing separated stand-alone platform virtual networks to connect.  This 

additional capability would allow two students to build independent networks and then 

connect together to participate in localized red/blue exercises.  Ultimately, incorporating 

the ability to provide independent stand-alone virtual network platforms with the ability 

to connect independent virtual networks using VDE or P2P-VPNs can be used to 

significantly increase the effective network footprint used in the large-scale ranges 

previously discussed. 

3.7.9 In summary, there is a wide range of existing projects that utilize 

virtualization techniques to provide an education platform for cyber security education. 

The designers of these platforms tend to choose an individual virtualization technique 

based on the requirements and performance requirements their platform must support. It 

is possible, however, to combine some types of virtualization on the same host. Doing so 

allows a cyber training platform to take advantage of the benefits of high performance 

virtualization techniques such as operating system virtualization, while still providing the 

same feature set as the more resource intensive full virtualization. Another need in a 

training platform is the ability to connect virtual machines. Providing this capability 

through peer to peer virtual private networks enables a layer of flexibility in how virtual 

machines connect to each other, independent of the underlying physical topology. This 

combination of host and network virtualization provides the conceptual building blocks 

useful in developing a platform for cyber education and training. 
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IV. Methodology 

4.1. Overview 

4.1.1 In order to validate the role of hybrid virtualization and peer to peer virtual 

private networks in building a platform for cyber education and training, it is important to 

understand the performance characteristics of each technology.  Each category of 

virtualization has developed out of the desire to achieve some balance of features, 

capabilities and performance. This chapter provides a methodology that evaluates 

quantitatively the performance characteristics of the design discussed in Chapter III. The 

first section presents the methods to compare the traditional methods of virtualization to a 

novel approach that combines two types of virtualization simultaneously on the host 

platform. This includes important design criteria that are critical for properly evaluating 

the performance characteristics of host based virtualization. The final section presents a 

method that evaluates the performance characteristics of a peer to peer virtual private 

networking technology relative to direct network connections.  

4.1.2. Methodology Components 

4.1.1 The remainder of this chapter partitions the problem space into two parts. 

The first part presents a methodology to analyze the role of virtualization at the host 

level. Specifically it compares three classical virtualization techniques with the hybrid 

approach. The first part of host based virtualization section explains the special design 

consideration needed in measuring the performance of different hypervisors, each of 

which is designed to support a unique environment. The final part presents the 

experimental setup that creates similar environments for each type of virtualization 
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platform and then performs a variety of benchmarks in each platform. This provides a 

common operating environment to determine how each virtualization platform performs 

comparatively. 

4.1.2 The final portion of this chapter presents a methodology to analyze the 

performance characteristics involved with virtualization at the network level. This portion 

examines the use of a peer to peer virtual private networking technology as a method for 

providing network virtualization of virtual machines. Two benchmarks types provide 

both latency and throughput performance metrics for each virtualization platform. The 

experiments perform these benchmarks both with and without the network virtualization 

in place in order to determine the amount of overhead compared to direct physical 

connections. 

4.2. Host Based Virtualization Experiments 

4.2.1. Performance Analysis Experiments 

4.2.1.1 A hybrid virtualization technique is proposed as a possible solution to 

providing a more efficient virtualization platform for situations involving several virtual 

machines. One of the primary measures of performance of a computer system is the time 

required for that system to perform a fixed set of computational tasks. The purpose of this 

experimental setup is to create an environment for each virtualization platform where a 

standard set of benchmarks execute in order to determine the performance profile of that 

platform. 
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4.2.2. Design Considerations 

4.2.2.1 Measuring the performance of a computer system can take on many 

different forms depending on the application. Virtualization brings into account its own 

unique set of design challenges when it comes to performance analysis. One aspect of 

this research that is especially challenging is designing a workload that will execute on 

each type of virtualization technology with the minimal amount of changes. It is 

important that the differences in the performance characteristics for each technology be 

representative of the performance capability of the hypervisor and not interference from 

an outside source. For example, if a test measures the time taken to compile a program 

from source, care should be taken so that the compiler and the libraries the benchmark 

depends on are the same from hypervisor to hypervisor.  

4.2.2.2 One major difficulty with maintaining consistency in the performance 

workload is the fact that some hypervisors require extensive modification of the host 

kernel. This means that the host operating system itself must be customized for the 

hypervisor. The host kernel can have a significant impact on the performance of a system, 

since it is the core engine that drives everything from disk access to process and thread 

scheduling. In addition to modifying the host kernel, hypervisors such as OpenVZ and 

Xen place specific requirements on the guest operating environment. In the case of 

OpenVZ, the guest kernel is the same as the host kernel. Therefore the guest kernel is 

also intrinsically tied to the OpenVZ hypervisor. In the case of Xen, the privileged host 

Dom0 kernel is often different that the unprivileged guest DomU kernel (though it is 

possible to have a kernel that can function as both). Either way, both the guest and the 
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host kernels also have to have modifications that are Xen specific. Furthermore, these 

modifications cannot be applied to an arbitrary Linux kernel. The patches and code 

provided by Xen only work with kernels provided by the Xen project. 

4.2.2.3 As hypervisors (especially those that have been designed to extract higher 

performance in their virtualization paradigm) have competing and often conflicting 

requirements, the difficulty of maintaining a consistent environment for a workload 

becomes more apparent. An important question becomes what a viable approach should 

be in order to minimize the changes that must occur from hypervisor to hypervisor. The 

approach taken in this research is to use the Linux distribution CentOS as a base 

operating system. CentOS is the freely distributed repackaging of the commercial Red 

Hat Enterprise Linux (RHEL) distribution. CentOS distinguishes itself for this type of 

performance analysis in two ways. First, it is based on a very stable and widely accepted 

code base from Red Hat’s flagship enterprise operating system. Secondly, it provides the 

widest and most stable integration of the hypervisors under consideration in this research. 

So although the hypervisors technologies require all the modifications listed above, a 

common distribution helps to minimize the effects of these. Each CentOS kernel is based 

on a heavily patched 2.6.18 Linux kernel, forked and maintained by Red Hat. Both the 

Xen and OpenVZ provide kernels that are based on the same Red Hat kernel that CentOS 

uses. At least with regards to the host, this common kernel code base helps to minimize 

possible interference from sources other than the overhead required by the hypervisor. 

4.2.2.4 Another design consideration is the guest operating system. As a baseline, 

the same considerations that were made for the host operating apply to the guest 
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operating systems as well. In the case of OpenVZ, since CentOS is the host operating 

system, it by default also becomes the guest operating system since the kernels are shared 

between the two. In the case of Xen, CentOS provides an unprivileged DomU kernel to 

use. With any of the full virtualization techniques, since they support a large range of 

guest operating systems, running CentOS presents no particular challenge.  

4.2.2.5 One virtualization technology that does present a challenge is the case of 

User Mode Linux. Although User Mode Linux has been rolled into the official source 

tree for Linux kernels 2.6 and above, CentOS does not support being compiled for the 

User Mode Linux architecture. It is possible to utilize a non-CentOS kernel on a CentOS 

file system, but this begins to disrupt the consistency levels between workloads on each 

hypervisor. Since the CentOS kernel is heavily patched and customized for an enterprise 

environment, it can be difficult to compile a User Mode Linux that will match the 

CentOS kernel feature for feature. For this reason, User Mode Linux is not included in 

this study.  

4.2.2.6 Another design consideration is the load that will be applied to each 

hypervisor. In the case of this study, the load is represented by virtual machines. So as is 

the case for the host operating system, the guest operating systems must be as close as 

possible to each other with respect to each hypervisor. The challenge here is that each 

virtualization technique presents a unique perspective to the guest operating system with 

respect to what hardware is available or even what kernel the guest should run. For 

example, both paravirtualization and full virtualization provide abstract hardware devices 

to the guest operating systems. Both systems also have virtual hard drives that are 
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typically represented by a file on the host operating system. The virtual machine interacts 

with this file as if it was a physical hard drive. Operating system virtualization does not 

fit this paradigm. Files for the guest machine exist directly on the host hard drive and 

access to the guest happens in a much more direct manner. This makes it difficult to 

present an identical load to each hypervisor. The changes applied to the load for each 

hypervisor should be minimal and should not be related to aspects of the benchmark itself 

(compiler and library versions, benchmarking code, etc.). 

4.2.2.7 The final design consideration is that the benchmarking processes must be 

repeatable. This implies a certain level of automation that must be achieved so that the 

variance between samples is minimized. The automation must provide the means for each 

hypervisor to conduct the performance analysis tests with as few as possible hypervisor-

specific changes as possible. This level of automation is achieved through the use of 

custom scripts that clone the base configurations, start the virtual machines and control 

the timing of the benchmarks. 

4.2.2.8 In summary, the performance analysis of any hypervisors that require 

extensive and mutually exclusive modifications to the host or guest operating systems is 

going to face a challenge when it comes to eliminating the interference due to those 

modifications. This research attempts to minimize this interference by using the same 

CentOS distribution as the host and guest operating system and performing the 

benchmarks in a repeatable, automated fashion. 
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4.2.3. Benchmarks 

4.2.3.1 In order to provide flexibility and stability in the benchmarks, the design 

uses a prepackaged suite of benchmarks called Phoronix Test Suite [55]. Phoronix Test 

Suite is a benchmarking suite written in PHP designed for automating the process of 

benchmarking Linux systems. It provides a command line interface to automatically 

download and install various commonly used benchmarks. It also automates the process 

of running multiple benchmarks in a suite. The cross platform nature of PHP makes it a 

natural fit to run both on the guest and host platforms. 

4.2.3.2 All performance tests were carried out on hardware with the following 

specifications: 

 Dell PowerEdge 860 

 Intel Xeon 3060 Conroe 2.4GHz 4MB L2 with 1066 MHz bus and Intel VT-x 

virtualization 

 4 GB of RAM 

 2 x 80 GB hard drives 

 2 x Network Interface Cards 

 

4.2.3.3 Separate full installs of the CentOS operating system were made to several 

partitions on the first 80 GB hard drive, one partition for each hypervisor under test and 

one clean install to use as a comparative baseline. A minimal CentOS install was made as 

a guest for each hypervisor. The Phoronix Test Suite along with the necessary supporting 

tools to execute the benchmarks was installed to both the guest and host systems. 
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4.2.3.4 Three benchmarks from the Phoronix Test Suite were selected to run 

across each of the platforms. These benchmarks represent real world tasks such as 

compiling software, encoding media files and compressing files. These tasks each 

provide a unique set of requirements on the subsystems of the virtualization platform 

including kernel and I/O performance. These benchmarks are also important for this type 

of testing because of the longer time duration of the test and the small variability of the 

results from run to run. The long time duration is necessary because the timer for the 

benchmark is not inside the virtual machines performing the test. This is because time 

inside a virtual machine can be inaccurate [56]. A longer duration test minimizes the 

effect of the overhead in the communication between a virtual machine and the host 

described below. Small variability between test runs ensures that a sample mean 

accurately reflects the performance of the hypervisor and helps to provide a more 

concrete comparison. 

4.2.3.5 For each hypervisor, a base guest machine was created. This base image 

was then cloned to create six virtual machines. Each machine was configured to acquire a 

DHCP address from the host machine on boot. A custom script was placed in the systems 

startup files that initiated contact to the host. Another script on the host waits for guest 

machines to connect. When the scripts connect, they exchange information about which 

benchmark to perform and any other relevant data. At this point the virtual machine script 

waits for the signal to proceed with the benchmark. When the host is ready and all the 

virtual machines are connected, it begins an instance of the benchmark on the host. The 

script then immediately gives commands to each virtual machine to begin the benchmark. 
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The host script times how long it takes for the entire process to complete. This time is the 

metric used in the results section of Chapter V.  

4.3. Network Based Virtualization Experiments 

4.3.1. Virtualization of the Network Layer 

4.3.1.1 Depending on the needs of the training environment, providing a 

mechanism for decentralizing and virtualizing the network layer may provide unique 

benefits in terms of the complexity of virtual network topologies. The decoupling of 

virtual network topology from the underlying physical network topology allows for a 

variety of training environments. One major advantage of this approach is the ability to 

easily provide distance learning capability to a training platform. Students would be able 

to connect virtual machines on their host machines from anywhere on the public Internet 

and connect to virtual training environments as if they were in the classroom. 

4.3.1.2 Another benefit of virtualizing the network environment is that it provides 

a mechanism to define virtual network topologies programmatically. This can be a very 

useful tool when students are learning to create network topologies and understand the 

various concepts involved with large scale computer networks. Network virtualization 

allows students to create their own network topologies with their host node and 

seamlessly integrate their network with other networks created by other students and the 

instructor. The result is a very realistic environment that has been produced entirely at the 

software level and does not require complex and expensive physical equipment and 

resources. 
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4.3.2. Experimental Setup 

4.3.2.1 The purpose of the network virtualization experimental setup is to evaluate 

the performance characteristics of network virtualization techniques compared to direct 

physical connections. The experiments focus on the performance metrics of network 

latency and network bandwidth. The performance measurements in these experiments use 

the same server cluster described in 4.2.3.2 connected via a Cisco 2600 10/100 switch. 

For this discussion the server initiating the connection is referred to as T and the 

receiving computer as R.  

4.3.3. Benchmarks 

4.3.3.1 The ping utility provides the network latency measurement. The ping 

utility on T sends a small ICMP Echo Request packet to R and begins a timer. When R 

receives the ICMP Echo Request it sends an ICMP Echo Reply packet. When T receives 

the ICMP Echo Reply, it stops the timer and reports the total amount of time elapse since 

sending the ICMP Echo Request. For this experiment, T first clears its ARP cache and 

sends a ping to R. This first ping with a clean ARP cache forces T to send out an ARP 

request first in order to determine the MAC address of R. This measures the amount of 

initial connection latency. T then sends a second ping now that it has the MAC address of 

T. This second ping measures the resolved connection latency. 

4.3.3.2 The network benchmarking utility TTCP provides the bandwidth 

measurement. TTCP is capable of sending varying sized loads over the network and acts 

as both the transmitter and receiver of network packets. TTCP provides timing and 

bandwidth measurements on both the transmitting and receiving nodes. TTCP creates a 
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fixed size memory buffer on T and continuously sends the contents of this buffer a 

configurable number of times. The advantage of using a memory buffer as the source 

compared to a file is that it focuses the bandwidth measurement on the performance of 

the network rather than the local file I/O performance of the host. The experiment sets up 

a TTCP transmitter on T and a TTCP receiver on R. The experiment uses the default 

configuration options for TTCP except for varying the total number of bytes sent through 

the network. The experiment varies this factor by 16MB, 32MB, 64MB and 128MB. 

TTCP measures the amount of time to send the specified number of bytes through the 

network, indicating the amount of bandwidth available between the two nodes. 

4.3.3.3 The experiments use latency and bandwidth tests in various configurations 

in order to provide a comparison between physical and virtualized network connections. 

The baseline is two servers that are physically connected and not running any 

virtualization software. The tests are repeated using VirtualBox, Xen and OpenVZ virtual 

machines as T. These virtual machines use virtualized network connections to connect to 

a physical machine R that also uses a virtualized network connection. The P2P VPN 

solution N2N is used to provide the virtual network connections. This provides data to 

compare against the baseline configuration described above. This set of experiments does 

not represent a full factorial design. Specifically, this set of experiments does not include 

performance data on virtual machines with physical connections. The reason for limiting 

the scope of the experiments to virtual machines with virtualized network connections is 

that this represents the target configuration of the system described in section 3.6. Also 

hybrid virtualization is not used in this set of experiments. Since the network connections 
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are from a single virtual machine to a physical machine, the hybrid virtualization 

technique would use either VirtualBox or OpenVZ to perform this experiment. Therefore 

the results would be the same as the results for either of those hypervisors individually. 
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V. Results 

5.1. Host Based Virtualization Results 

5.1.1 The tests were performed by running the designated benchmark 

simultaneously inside each running virtual machine as well as on the host system. The 

total time to complete the benchmark was recorded on the host. The selected benchmarks 

measured the time needed to configure and compile an Apache web server, encode a 

large audio file to MP3 format and compress a large file using the 7zip format. For the 

initial set of experiments, three samples for each data point were collected. While this 

does not represent enough samples to perform a rigorous statistical analysis it does 

illustrate some general behavior for each benchmark. The largest confidence intervals 

were ±9.6 sec, ±4.1 sec and ±2.3 sec for the Compile Apache, 7zip Compression and 

Encode MP3 benchmarks respectively.  

5.1.2 These results show that performance between hypervisor techniques varies 

for each benchmark. Figures 12, 13 and 14 present the results from each of the 

benchmarks. Time is used as the metric of performance where lower times represent 

higher performance. The method used to collect these samples is described in 4.2.3.5. In 

the case of the hybrid approach, half of the virtual machines use the VirtualBox 

hypervisor and half use the OpenVZ hypervisor. 
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Figure 10: Results of the Encode MP3 benchmark 

 

Figure 11: Results of the 7zip Compression benchmark 

 

Figure 12: Results of the Compile Apache benchmark 
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5.1.3 The Encode MP3 benchmark shows consistent performance across each 

type of hypervisor. This illustrates a workload for which there is no distinct performance 

advantage for any one hypervisor. The 7zip Compression benchmark shows most of the 

hypervisors in a similar performance category with the possible exception of OpenVZ. 

OpenVZ was expected to outperform the other hypervisors due its low overhead. The 

7zip compression benchmark illustrates an example where this might not be the case. The 

Compile Apache benchmark demonstrates the greatest performance differences amongst 

the hypervisors. The Compile Apache benchmark performs a significant amount of 

random file access during both the configuration and compilation phases. The virtual file 

I/O drivers in VirtualBox are most likely responsible for this slowdown. Issues regarding 

the performance of VirtualBox in compilation tasks have been reported on the VirtualBox 

forums [57]. VirtualBox performed significantly worse with Xen and OpenVZ comparing 

similarly to each other. The hybrid approach fits squarely in the middle. 

5.1.4 Within the same benchmark, there appears to be little variation in 

performance from run to run on the same hypervisor. This implies that the data presents a 

good representation of how hypervisors perform on each particular task. However, since 

the relative performance of the hypervisors changes so drastically from task to task, it 

appears that there may not be a clear champion in terms of overall hypervisor 

performance. In other words, the results from these benchmarks are only representative of 

these tasks and do not appear to apply in a broader sense to each hypervisor. 
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5.1.5 Although it is not possible to draw general conclusions about each 

hypervisor with respect to its relative performance, the benchmarks do highlight some 

interesting advantages of the hybrid approach. The best example is found in the Compile 

Apache benchmark. Here the performance of the hybrid technique falls between full 

virtualization and operating system virtualization. In this case, the hybrid technique 

provides all the capability advantages of full virtualization, but is also taking advantage 

of some performance benefits of operating system virtualization. This performance gain 

is dependent on both the mix of virtual machines on the hybrid system as well as the 

workload of each virtual machine. 

5.2. Network Based Virtualization Results 

5.2.1. Introductory Clarifications 

5.2.1.1 N2N uses software network devices called TAP/TUN devices to provide 

its virtual networking capabilities [40]. Although OpenVZ claims to support TAP/TUN 

devices inside virtual machines and provides steps to enable this environment [58], these 

steps did not work with setup described in the methodology in Chapter IV. Specifically, 

N2N was unable to establish a TAP device inside an OpenVZ virtual machine. One 

possible cause for this is due to the difference between persistent and non-persistent TAP 

devices. N2N relies on the creation of a persistent TAP device, but OpenVZ appears to 

only support non-persistent or transient TAP devices. The result of this is that data could 

not be collected for the OpenVZ virtual machine configuration. This illustrates a potential 

drawback to the OpenVZ approach to virtualization. 
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5.2.1.2 The following notation is used throughout this section to describe the 

experimental configurations: 

 Physical/N2N: Describes the presence or absence of network virtualization 

respectively 

 Host/VM: Describes if the tests were run from the host or inside a virtual 

machine 

 Novirt/Xen/OpenVZ/Vbox: Describes the hypervisor used to conduct the 

experiment with Novirt representing no virtualization installed and Vbox 

representing VirtualBox. 

 Ping1/Ping2/16mb/32mb/64mb/128mb: Describes the result of the first ping, 

second ping and various loads sent by the TTCP benchmark respectively 

 T/R: Describes if the data is from the transmitter or receiver respectively in the 

TTCP benchmarks 

 

5.2.2. Ping1 Latency Results 

5.2.2.1 The first ping experiment is the initial ping that is sent from the 

transmitting computer S to the receiving computer R. Since the ARP cache line for the 

target IP address is cleared before the ping is sent, this first ping represents the amount of 

connection setup overhead. The results of each ping were written to a file and the 

experiment collected 30 samples per configuration. When the data was collected for 

analysis, it became apparent that the data was not normally distributed. Figure 13 gives 

the histograms for each configuration in the experiment.  
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Figure 13: Histograms for each Ping1 experiment configuration 
5.2.2.2 In the baseline sample, there appears to be two scenarios affecting the 

sample mean. Performing an Anderson-Darling Normality Test in the statistical package 

Minitab produces the graph shown in Figure 14. This shows that there are clearly two 

means present during this experiment. The first mean is based on conditions that leads to 

a sample mean value near 0.6 ms. The second condition leads to a sample mean of nearly 

1.6 ms. There are 7 samples that fall in the 0.6 ms grouping compared to the remaining 

23 samples in the 1.6 ms grouping. 
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Figure 14: Normal Distribution Probability Plot for Ping1 experiment on a host with 
no host or network virtualization 

 

5.2.2.3 The reason for the faster latency sample mean is that the ARP cache line 

for the destination machine is filled after the cache line is cleared by the script but before 

the first ping is sent out on the network. One possibility for this behavior is other 

networking software also running on the host that is able to force an ARP resolution to 

happen in between the time when the ARP cache line is cleared and when the ping utility 

forces a new ARP request to be sent. This would result in a reduced round trip time since 

the overhead of the initial connection would have already been met. If this is the case, the 

smaller cluster is actually samples from a configuration represented in the ping2 study. If 

we make this assumption and eliminate these samples from the sample population, the 

resulting normality probability plot looks like the graph presented in Figure 15. 
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Figure 15: Normality distribution plot after removing lower cluster samples 
 

5.2.2.4 The graph presented in Figure 15 demonstrates that when the higher 

latency sample cluster is examined individually, the results are a much closer match to a 

normal distribution with one high latency outlier. These types of high latency outliers 

may be the result of special case bandwidth consumption on the switch (due to a burst of 

broadcast packets for example) or a brief abnormal load on either the host or target 

machine. In order to perform an actual statistical analysis for this experiment, the effects 

of the low latency samples must be isolated at the experiment level. Due to the multiple 

possible causes involved, doing so falls outside the scope of this research document. 

Foregoing a formal statistical analysis, the raw results of the sampling is present in Table 

2. The “Overhead” column is the result of dividing the sample mean of a particular 

configuration by the baseline sample mean. 
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Table 2: Results of Ping1 Experiment 
 

Network Hypervisor Location 
Latency 

(ms) Overhead Std Dev 
physical none host 1.325 1.000 0.440 

n2n none host 1.691 1.276 0.443 
n2n vbox host 1.797 1.356 0.395 
n2n openvz host 2.111 1.593 0.242 
n2n xen vm 2.691 2.031 0.216 
n2n vbox vm 2.807 2.118 0.882 
n2n xen host 4.574 3.451 0.332 

 

5.2.3. Ping2 Latency Results 

5.2.3.1 The results from the Ping2 set of experiments conform much closer to a 

normal distribution. This is because it is easier to isolate the low latency case compared 

to capturing multiple samples of the initial connection setup latency. Figure 16 shows an 

example normal distribution probability plot for the same configuration presented in the 

Ping1 examples. There is one outlier and the distribution has small amount of bimodal 

skew as indicated by the ‘S’ shaped bends in the plot. When compared to the Ping1 

results shown in Figure 14, the data is much closer to a normal distribution and is suitable 

for more thorough statistical analysis. 
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Figure 16: Normal Distribution Probability Plot for Ping2 experiment on a host with 
no host or network virtualization 

 

5.2.3.2 The results for the Ping2 experiment are presented in Table 3 and the box 

plot comparing the results is shown in Figure 17. The “Confidence” column in Table 3 

indicates the calculated confidence interval for the sample mean. The results fall into 

rough three groups. On the low side, the physical connection has an expectedly low 

latency relative to the network virtualization options. On the high side, The VirtualBox 

virtual machine shows a statistically significant higher latency than all the others. Three 

are also a significant number of outliers associated with the VirtualBox virtual machine. 

Although small variations appear amongst the other configurations, they are still 

relatively close to each other in terms of latency. 
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Table 3: Results for Ping2 Experiment 
 

Network Hypervisor Location Latency (ms) Overhead Std Dev 95% Confidence
physical novirt host 0.147 1.000 0.004 ±0.001 

n2n openvz host 0.520 3.536 0.015 ±0.005 
n2n xen vm 0.482 3.276 0.015 ±0.005 
n2n vbox host 0.407 2.765 0.015 ±0.005 
n2n novirt host 0.412 2.802 0.015 ±0.005 
n2n xen host 0.449 3.051 0.017 ±0.006 
n2n vbox vm 0.735 4.993 0.214 ±0.076 
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Figure 17: Box plot for the various Ping2 configurations 
 

5.2.3.3 The Ping2 set of data provides the most insight into the effect of the 

network virtualization on the latency of the network connection. There appears to be 

about a threefold increase in latency for most of the configurations relative to a direct 

physical connection with no host virtualization. The choice of hypervisor has a relatively 
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small effect on the latency with the exception of VirtualBox which results in statistically 

significantly higher latencies and much wider range of latency values. 

5.2.4. TTCP Bandwidth Results 

5.2.4.1 Relative to the latency experiments presented above, the bandwidth 

experiments introduce a significant increase in the number of configurations. The 

experiment was repeated for each configuration presented in the latency experiments with 

the addition of four different levels representing the different sized loads. The latency 

experiments also indicate that there is a possibility for non-normal distributions in the 

data. So the first step in sifting through the large amount data from the experiments is to 

focus on the results that appear to represent normal distributions. Also due to the results 

in the latency experiments, a reasonable assumption is that the difference in performance 

between physical and virtualized connections represents the bulk of what differences 

might exist.  

5.2.4.2 Using these assumptions as a guide, the following sequence of figures 

present graphs for the physical and virtualized network connections on systems with no 

host based virtualization installed. The probability plots in these graphs illustrate how 

closely the sampled data represents a normally distributed data set. The curves represent 

the fit to a normal distribution at a 95% confidence interval. A linear trend in the data that 

falls within the 95% confidence interval boundaries indicates a good fit to a normal 

distribution.  
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Figure 18: Normal distribution probability plot for TTCP receiving on physical 
connection 
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Figure 19: Normal distribution probability plot for TTCP transmitting on physical 
connection 
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Figure 20: Normal distribution probability plot for TTCP receiving on virtualized 
connection 
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Figure 21: Normal distribution probability plot for TTCP transmitting on virtual 
connection 
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5.2.4.3 The plots show various degrees of fit to a normal distribution. Many of the 

16mb profiles show the greatest degree of deviation from a normal distribution. This is 

likely due to the fact that the short amount of time required to transmit the 16mb load 

over the network allows uncontrolled factors in the experiment to affect the amount of 

bandwidth available on the network at the time of the experiment. The probability plots 

also show that the 128mb load is the configuration that stays closest to the expected 

behavior of a normal distribution. This behavior should be expected with a larger network 

load since the disruptions that become noticeable in the shorter bursts get smoothed out 

as the transfer takes longer in time. 

5.2.4.4 Given the results from the probability plots, the 128mb appears to be the 

most stable distribution of data points from the four load sizes. Figure 22 shows the box 

plot of the TTCP transmit bandwidth results for the 128mb load.  

n2
n_

vb
ox

_v
m_1

28
mb_

t

n2
n_

xe
n_

vm
_1

28
mb_

t

n2
n_

no
vir

t_h
os

t_1
28

mb_
t

n2
n_

op
en

vz
_h

os
t_1

28
mb_

t

n2
n_

vb
ox

_h
os

t_1
28

mb_
t

n2
n_

xe
n_

ho
st_

12
8m

b_
t

ph
ys

ica
l_n

ov
irt

_h
os

t_1
28

mb_
t

12000

10000

8000

6000

4000

2000

Ba
nd

w
id

th
 K

B/
se

c

 

Figure 22: Box plot of the TTCP transmitters in the 128mb transmission load 
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5.2.4.5 The box plot describes a similar situation as the results from the latency 

experiments. There is a large, statistically significant difference between the physical 

connection and the virtualized connections. Amongst the host based virtualized 

connections, some differences exist but are relatively minor. Both the Xen and 

VirtualBox show measureable and statistically significant reduction in bandwidth, with 

VirtualBox showing the highest reduction in performance. The results for the receiving 

side of the same TTCP transmission are shown in Figure 23. These results are almost 

identical to the box plot for the transmitting node shown in Figure 22. 
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Figure 23: Box plot of the TTCP receivers in the 128mb transmission load 
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Table 4: Results for the 128mb TTCP transmit bandwidth 
 

Network Hypervisor Location KB/sec Overhead Std Dev 95% Confidence

n2n vbox vm 2551.549 4.627 71.030 ±25.417 

n2n xen vm 3981.741 2.965 21.017 ±7.521 

n2n openvz host 4429.964 2.665 57.669 ±20.636 

n2n xen host 4482.822 2.634 22.005 ±7.874 

n2n novirt host 4668.067 2.529 22.785 ±8.153 

n2n vbox host 4678.980 2.523 36.049 ±12.900 

physical novirt host 11806.356 1.000 19.983 ±7.151 

Table 5: Results for the 128mb TTCP receive bandwidth 
 

Network Hypervisor Location KB/sec Overhead Std Dev 95% Confidence

n2n vbox vm 2546.520 4.510 69.183 ±24.756 

n2n xen vm 3965.723 2.896 20.360 ±7.286 

n2n xen host 4408.448 2.605 18.826 ±6.737 

n2n openvz host 4425.594 2.595 57.467 ±20.564 

n2n novirt host 4639.243 2.476 20.191 ±7.225 

n2n vbox host 4649.025 2.470 32.881 ±11.766 

physical novirt host 11485.411 1.000 0.054 ±0.019 

 

5.2.4.6 Table 4 and Table 5 give the numerical results for the TTCP 128mb 

experiment. The “Overhead” column is calculated by dividing the sample mean for that 

particular configuration by the baseline physical connection with no host virtualization.  

5.2.4.7 There are many different techniques for providing desktop virtualization. 

Each technique comes with its own unique set of advantages, disadvantages and 
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performance profiles. Unfortunately there does not appear to be a silver bullet when it 

comes to virtualization. In the small test workloads presented here, the performance 

profiles have been both very similar and very different depending on the specific 

benchmark under test. The benchmark that best illustrates the use of a hybrid approach is 

the Compile Apache benchmark. Here the hybrid approach improves the performance of 

the full virtualization performance. Although the performance is not quite as good as 

either paravirtualization or operating system virtualization, the hybrid approach provides 

additional capabilities that these two techniques cannot provide. The primary capability is 

the hybrid's ability to virtualize arbitrary guest operating systems. Overall, the hybrid 

approach appears to be a success candidate for use as the primary virtualization technique 

for a cyber warfare training simulation environment. It has the ability to support a wide 

variety of operating systems and performs equal to or better that full virtualization alone 

depending on the workload. 

5.2.4.8 Regarding network virtualization, there is an expected amount of overhead 

associated with this method. This is due to the additional layer in the network stack that 

must encrypt and package inbound and outbound packets so that they will travel in the 

virtual network. Experimental results show that in a local area network, this overhead 

results in approximately two to four times the performance loss relative to direct physical 

connections. The advantage of virtualized networks is that they allow for greater 

flexibility in defining network topologies that are independent of the underlying physical 

network topology. 
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VI. Conclusions and Recommendations 

his chapter provides a summary to the research presented in this document as well 

as the direction for future research in this area. The chapter is divided into two 

sections. The first section summarizes the three main areas of research presented in this 

document, the results of the experiments that were conducted as well as the implications 

of those results. The final section outlines potential areas for future research in this area. 

6.1. Conclusions 

6.1.1 This paper covers three related areas of research regarding virtualization in 

education. The first area describes some of the ideas behind creating a platform for 

conducting cyber warfare education and training. Virtualization is a key component in 

creating realistic cyber battlefields that allows Airmen to acquire hands on training in this 

increasingly important battle space. Improving technology performance in this domain 

will lead to an improved capability to accurately model and simulate the cyber domain. 

This is a necessary step forward for properly conducting education, training and 

operations in cyber.  

6.1.2 A variety of techniques exist to provide this virtualization capability, but 

each technique comes with its own set of unique advantages and disadvantages with 

regards to capability and performance. Full virtualization provides the most flexibility but 

incurs performance overhead to provide the layer of abstraction. Paravirtualization is able 

to improve performance over full virtualization by providing more integration between 

the guest and host. This performance gain comes at the cost of requiring modifications to 

the guest operating system, limiting the systems that can take advantage. Operating 

T 
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system or container virtualization provides the highest performance but also the closest 

integration between guest and host. 

6.1.3 Finding a balance between these competing technologies depends heavily 

on the requirements of the system under consideration. This research proposes a method 

that combines full virtualization and operating system virtualization together on the same 

host. This combination is possible because although each requires non-trivial 

modifications to the host, these modifications are mutually compatible. This research 

proposes an architecture that is capable of supporting full and container based virtual 

machines on the same host. This platform leverages the operating system flexibility of 

full virtualization along with the performance benefits of operating system virtualization. 

6.1.4 The second area of research presented in this data is the set of experiments 

to determine the performance profile of the different approaches to virtualization, 

including the hybrid approach described above. Experimental data demonstrates that 

actual performance of these hypervisors is not always dramatically different. The 

performance characteristics depend on the task at hand. Two of the three benchmarks 

indicate no significant performance differences. One benchmark based on the time 

required to configure and compile the Apache web server did show a significant 

difference. In this case, the performance profile of the hybrid approach fell between full 

and operating system virtualization as expected. This shows that hybrid virtualization is 

capable of higher performance that full virtualization alone dependant on the workload as 

well as distribution between full and operating system virtual machines. 
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6.1.5 The final area of this research deals with the concept of network 

virtualization. Network virtualization is an important component of the cyber warfare 

education and training platform described in this research. Network virtualization allows 

for increased flexibility in the arrangement of virtual machines of varying hypervisor 

types. With network virtualization, the topology of a virtual network can be spread over a 

wide area network such as the public Internet. This topology can be software defined and 

independent of the underlying physical topology. This creates an environment where 

students have increased flexibility over the creation and connections of their virtual 

networks. 

6.1.6 As with host based virtualization, this flexibility does not come for free. 

There is an overhead associated with the virtualization of the network layer. Additional 

software drivers must encrypt and repackage inbound and outbound packets destined for 

the virtual network. This research presents a set of experiments designed to characterize 

this performance overhead relative to direct connections. The experimental data indicates 

there is anywhere from a two to four times reduction in performance with respect to both 

latency and bandwidth when the network is virtualized over a direct physical connection.  

6.2. Recommendations For Future Work 

6.2.1 Although the hybrid approach shows some promise in the Apache 

benchmark, it is not without its drawbacks. Two of three benchmarks indicate there is not 

a significant amount of performance difference between various tasks. Although the two 

systems selected for this research are capable of working together on the same host, the 

experience is not entirely stable. Some issues arose during the experiment phase 
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regarding network connectivity. The biggest problem was the lack of support for 

persistent TAP/TUN drivers inside OpenVZ containers. This prevented a test of the N2N 

peer to peer virtual private networking software.  

6.2.2 The recommendation of this research is that additional effort be applied to 

methods of integrating peer to peer virtual private networking solutions to a cyber 

warfare education and training platform. Given that performance of the different 

hypervisors depends heavily on the task at hand, those that use virtualization for 

education have most likely found a virtualization technique that suites their purposes. A 

direction for future work involves finding flexible and efficient ways to connect the 

resources of different academic institutions, regardless of the choice of underlying 

hypervisor, in a way that allows for the easy creation of wide area cyber warfare arenas. 

Other possible research areas include methods to increase the efficiency of current 

hypervisor methods, especially with regards to memory, disk and network usage. 

6.2.3 As the Air Force pushes forward to fight in the Cyber domain, it is critical 

that Airmen have environments that allow for realistic training. Cyber is unique in the 

fact the tools best suited to model the domain are in the Cyber domain itself. 

Virtualization can create computer environment that in some ways can be nearly 

indistinguishable from computer systems running on traditional physical hosts. Research 

that can effective leverage this type of technology to create realistic cyber battlefields 

will help the United States Air Force maintain the leading edge in a growing and 

increasing contested Cyber domain.  
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Appendix A: Concepts in x86 Virtualization 

With the wide scale adoption of the Windows operating system and Intel x86 based line 

of processors (affectionately referred to as Wintel), the x86 platform has nearly saturated 

the desktop market and a large portion of the Information Technology industry at large. 

Over time, physical hardware continued to mature and develop. An effect known as 

Moore's law has predicted a doubling in hardware performance every 12 to 18 months. 

This exponential rate of performance growth has lead to hardware designs that are 

increasingly more capable. Virtualization is one attractive use of this availability of 

performance. The ability to abstract the underlying hardware at the software level in a 

manner that does not significantly reduce performance introduces a wide variety of useful 

applications. Running multiple instances of what appears to be independent computer 

systems provides unique capabilities anywhere from creating fault tolerant setups to 

investigating operating system design principles. 

 

In order to understand the way in which virtualization occurs on the x86 platform, it is 

important to review some basic principles relating to how processors implement security 

privilege levels. A processor will typically have several privilege modes available to the 

software it executes. This is to provide hardware level separation of operating system 

code and user code. The operating system kernel will typically execute at the most 

privileged level, giving it unrestricted access to memory and other hardware devices 

available. The operating system will then run all the other programs and software it 

manages at a lower privilege level. When these lower privileged programs require access 
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to hardware devices such as the hard disk or the graphics card, the program executes a 

system call. A system call allows the program to transfer control to the operating system 

so that it can execute any privileged instructions the unprivileged code is unable to 

execute itself. When the operating system completes the requested service, it returns 

control back to the code that made the system call and execution continues. 

 

The Intel architecture specifies four privilege levels called rings [22]. They are labeled 

Ring 0 through Ring 3 with the former being the most privileged level and the latter 

being the least privileged. Although there are four rings available, in practice only two 

ring levels are utilized by mainstream operating systems such as Windows and Linux. 

Typically the operating system kernel itself operates at Ring 0 and all user code (that is 

everything besides the operating system) runs at Ring 3. When user code wishes to 

perform some type of privileged instruction (like interact with the hardware), the user 

code will make a system call. On the x86 platform, this is generally done either with a 

software interrupt or through the SYSENTER/SYSCALL instructions. illustrates the 

typical execution flows using the traditional x86 security model. 
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Figure A1: Traditional execution paths for the x86 security model 

 

While the system call describes a mechanism where privilege is properly escalated, the 

CPU must account for unprivileged code attempting to execute privileged code on its 

own. Whenever a program attempts to execute a privileged instruction, the CPU uses the 

current privilege level to determine if the instruction should be allowed to execute. If the 

current privilege level is insufficient, the CPU generates a general protection fault. It is 

up to code at the next higher privilege ring to trap the fault and deal with the situation 

(terminate the offending program for example). The fault is trapped by the processor, 

which means the processor switches to the next highest privilege level that contains code 

that deals with the fault. Typically, since the operating system is the only other code 

present on the system and runs at Ring 0, the kernel is responsible for dealing with the 

fault. The following sections illustrate the importance that the ability to trap privileged 

instructions has in implementing virtualization. 
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The hardware requirements and characteristics necessary to properly support 

virtualization were laid out in a classic paper back in 1974 by Popek and Goldberg [14]. 

This paper lays out three fundamental characteristics that constitute a true hypervisor 

(referred to in the paper as a virtual machine monitor). First a hypervisor must create an 

environment wherein programs that execute in that environment must exhibit the same 

behavior as though they were executing on the real host. That is, from the perspective of 

the virtualized system it should not be able to determine that its instructions are being 

virtualized. Second, the efficiency of the virtualization must not substantially affect the 

speed. In other words, a statistically dominant set of the instructions must run at native 

speed and the overall overhead costs of virtualization must be insignificant. Finally, the 

hypervisor must be able to mediate all access of the virtual machine to physical resources 

such as CPU, memory, and I/O devices. 

 

There have been significant hurdles to overcome to make virtualization on the x86 

possible, let alone efficient. The x86 architecture was not originally designed with 

virtualization in mind. When virtualizing a platform such as the x86, code needs to be 

inserted into the flow of execution in such a way that from the operating system 

perspective the code acts like it is running physically on hardware when it is in fact being 

virtualized at a lower privilege level.  

 

Hardware platforms that correctly implement the features described by Popek and 

Goldberg generally do so through a technique known as trap-and-emulate. This technique 

involves running a hypervisor at a more reduced privilege level than the operating system 
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running on the physical hardware but higher than what the level at which unprivileged 

code executes. In the case of the x86 platform, the real operating system runs at Ring 0, 

the real unprivileged code runs at Ring 3, the hypervisor typically runs at either Ring 1 or 

Ring 2 and the virtualized unprivileged code would also typically run at Ring 3. With this 

setup, the unvirtualized code continues to operate as before. Also the virtualized 

unprivileged code also executes as it would normally in an unvirtualized system.  

 

The difference comes when unprivileged code executes a system call in order to execute 

privileged instructions. In the case of the virtualized system, the virtualized code running 

at Ring 3 would execute a system call. This results in a trap and the processor switches 

ring levels to the next privilege level that has code to handle the software protection fault 

that is generated. In the virtualized case, this would transfer control to the hypervisor 

running at either Ring 1 or Ring 2. This hypervisor creates an environment such that the 

virtualized operating system executes code as if it were in physical control of the 

hardware. This involves keeping track of virtual machine characteristics such as memory 

page tables, virtual hardware driver state and other internal data structures. At this point, 

the hypervisor virtualizes the request of the virtualized operating system and performs the 

action on a separate set of virtualized or real hardware components (such as memory, 

hard disks, and peripherals). Control may then return to the original point of execution 

where the system call originated. 

 

The key in this process working properly is that all instructions must trap properly. In 

other words, when the virtualized operating system attempts to execute instructions that 
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can only be executed at Ring 0, the system must properly trap that call and execute code 

to handle the general protection fault. Unfortunately in the original design of the x86, 

there are several privileged instructions that instead of trapping when executed at a lower 

privilege level will instead just silently fail. This prevents virtualization software from 

properly intercepting the privileged instruction and virtualizing its effect. One example of 

this is the POPF instruction [23]. This is a privileged instruction that needs to execute in 

Ring 0 as it is used to set and clear the interrupt-disable flag. However, when this code 

executes at any privilege level other than Ring 0, the CPU simple ignores the instruction 

instead of generating a general protection fault that can be trapped by a hypervisor. This 

makes it impossible for a hypervisor to properly intercept the instruction when the guest 

kernel executes it in its unprivileged state. 
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Appendix B: Complete Host Virtualization Results 

Xen (Host Benchmark time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 63.98 63.49 63.57 63.68 0.21
1 108.33 108.23 107.40 107.99 0.42
2 165.78 164.70 165.56 165.35 0.47
4 277.00 275.27 272.24 274.84 1.97

Xen (Total Time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 136.40 131.60 131.50 133.17 2.29
1 187.80 183.50 189.60 186.97 2.56
2 263.40 264.90 265.00 264.43 0.73
4 435.80 432.90 433.40 434.03 1.27

VirtualBox (Host Benchmark time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 47.61 47.43 47.39 47.48 0.10
1 53.96 54.53 53.82 54.10 0.31
2 60.69 61.09 59.67 60.48 0.60
4 80.80 78.42 76.71 78.64 1.68

VirtualBox (Total Time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 96.90 92.60 92.50 94.00 2.05
1 645.40 646.40 645.10 645.63 0.56
2 697.80 702.20 703.00 701.00 2.29
4 1442.90 1441.90 1476.80 1453.87 16.22

OpenVZ (Host Benchmark time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 52.05 51.80 51.37 51.74 0.28
1 94.73 94.32 94.04 94.36 0.28
2 146.97 147.93 148.19 147.70 0.52
4 280.90 282.80 278.90 280.87 1.59

OpenVZ (Total Time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 106.90 102.60 103.00 104.17 1.94
1 151.90 151.60 151.20 151.57 0.29
2 229.10 229.90 231.10 230.03 0.82
4 414.00 416.50 414.00 414.83 1.18
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Hybrid (Host Benchmark time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 51.45 51.55 51.68 51.56 0.09
1 N/A N/A N/A N/A N/A 
2 89.35 87.08 85.06 87.16 1.75
4 125.01 121.15 120.00 122.05 2.14

Hybrid (Total Time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 104.50 101.00 101.80 102.43 1.50
1 N/A N/A N/A N/A N/A 
2 717.70 713.50 716.80 716.00 1.81
4 850.20 855.40 856.40 854.00 2.72

Baseline (Host Benchmark time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 47.10 47.66 47.43 47.40 0.23

Baseline (Total Time in sec) 
VMs\Iteration 1 2 3 Average Std Dev 

0 93.90 91.10 91.30 92.10 1.28
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Appendix C: Complete Network Virtualization Results 

Net-
work 

Hyper-
visor 

Loc-
ation 

Bench-
mark Factor 

Exper-
iment 

Sample 
Mean Std Dev 95% CI 

physical novirt host ping default ping1 1.325 0.440 0.157

physical novirt host ping default ping2 0.147 0.004 0.001

physical novirt host ttcpr 128mb bw 11485.411 0.054 0.019 

physical novirt host ttcpr 128mb bytes 134217728 0.000 N/A 

physical novirt host ttcpr 128mb sec 11.410 0.000 0.000

physical novirt host ttcpr 32mb bw 11490.991 0.129 0.046

physical novirt host ttcpr 32mb bytes 33554432 0.000 N/A

physical novirt host ttcpr 32mb sec 2.850 0.000 0.000

physical novirt host ttcpr 64mb bw 11490.892 0.098 0.035 

physical novirt host ttcpr 64mb bytes 67108864 0.000 N/A 

physical novirt host ttcpr 64mb sec 5.700 0.000 0.000

physical novirt host ttcpr default bw 11489.686 0.205 0.073

physical novirt host ttcpr default bytes 16777216 0.000 N/A

physical novirt host ttcpr default sec 1.430 0.000 N/A

physical novirt host ttcpt 128mb bw 11806.356 19.983 7.151 

physical novirt host ttcpt 128mb bytes 134217728 0.000 N/A 

physical novirt host ttcpt 128mb sec 11.101 0.018 0.007

physical novirt host ttcpt 32mb bw 12791.481 58.636 20.982

physical novirt host ttcpt 32mb bytes 33554432 0.000 N/A

physical novirt host ttcpt 32mb sec 2.562 0.013 0.005

physical novirt host ttcpt 64mb bw 12140.932 115.585 41.361 

physical novirt host ttcpt 64mb bytes 67108864 0.000 N/A 

physical novirt host ttcpt 64mb sec 5.399 0.051 0.018

physical novirt host ttcpt default bw 12959.378 165.197 59.114

physical novirt host ttcpt default bytes 16777216 0.000 N/A

physical novirt host ttcpt default sec 1.265 0.015 0.005

n2n novirt host ping default ping1 1.691 0.443 0.159 

n2n novirt host ping default ping2 0.412 0.015 0.005 

n2n novirt host ttcpr 128mb bw 4639.243 20.191 7.225

n2n novirt host ttcpr 128mb bytes 134217728 0.000 N/A

n2n novirt host ttcpr 128mb sec 28.253 0.123 0.044

n2n novirt host ttcpr 32mb bw 4630.728 57.893 20.716

n2n novirt host ttcpr 32mb bytes 33554432 0.000 N/A 

n2n novirt host ttcpr 32mb sec 7.078 0.091 0.032 

n2n novirt host ttcpr 64mb bw 4651.609 32.454 11.613

n2n novirt host ttcpr 64mb bytes 67108864 0.000 N/A

n2n novirt host ttcpr 64mb sec 14.090 0.098 0.035

n2n novirt host ttcpr default bw 4642.175 87.542 31.326

n2n novirt host ttcpr default bytes 16777216 0.000 N/A 

n2n novirt host ttcpr default sec 3.530 0.070 0.025 

n2n novirt host ttcpt 128mb bw 4668.067 22.785 8.153

n2n novirt host ttcpt 128mb bytes 134217728 0.000 N/A
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Net-
work 

Hyper-
visor 

Loc-
ation 

Bench-
mark Factor 

Exper-
iment 

Sample 
Mean Std Dev 95% CI 

n2n novirt host ttcpt 128mb sec 28.079 0.136 0.049

n2n novirt host ttcpt 32mb bw 4741.557 66.604 23.834

n2n novirt host ttcpt 32mb bytes 33554432 0.000 N/A

n2n novirt host ttcpt 32mb sec 6.913 0.098 0.035

n2n novirt host ttcpt 64mb bw 4705.566 34.603 12.382 

n2n novirt host ttcpt 64mb bytes 67108864 0.000 N/A 

n2n novirt host ttcpt 64mb sec 13.927 0.103 0.037

n2n novirt host ttcpt default bw 4870.247 90.500 32.384

n2n novirt host ttcpt default bytes 16777216 0.000 N/A

n2n novirt host ttcpt default sec 3.365 0.062 0.022

n2n openvz host ping default ping1 2.111 0.242 0.086 

n2n openvz host ping default ping2 0.520 0.015 0.005 

n2n openvz host ttcpr 128MB bw 4425.594 57.467 20.564

n2n openvz host ttcpr 128MB bytes 134217728 0.000 N/A

n2n openvz host ttcpr 128MB sec 29.621 0.386 0.138

n2n openvz host ttcpr 32MB bw 4433.238 131.829 47.173

n2n openvz host ttcpr 32MB bytes 33554432 0.000 N/A 

n2n openvz host ttcpr 32MB sec 7.398 0.228 0.081 

n2n openvz host ttcpr 64MB bw 4426.166 122.922 43.986

n2n openvz host ttcpr 64MB bytes 67108864 0.000 N/A

n2n openvz host ttcpr 64MB sec 14.818 0.427 0.153

n2n openvz host ttcpr default bw 4486.614 137.559 49.224

n2n openvz host ttcpr default bytes 16777216 0.000 N/A 

n2n openvz host ttcpr default sec 3.656 0.118 0.042 

n2n openvz host ttcpt 128MB bw 4429.964 57.669 20.636

n2n openvz host ttcpt 128MB bytes 134217728 0.000 N/A

n2n openvz host ttcpt 128MB sec 29.593 0.386 0.138

n2n openvz host ttcpt 32MB bw 4449.708 132.627 47.459

n2n openvz host ttcpt 32MB bytes 33554432 0.000 N/A 

n2n openvz host ttcpt 32MB sec 7.370 0.227 0.081 

n2n openvz host ttcpt 64MB bw 4434.850 123.379 44.150

n2n openvz host ttcpt 64MB bytes 67108864 0.000 N/A

n2n openvz host ttcpt 64MB sec 14.788 0.427 0.153

n2n openvz host ttcpt default bw 4524.928 140.772 50.374

n2n openvz host ttcpt default bytes 16777216 0.000 N/A 

n2n openvz host ttcpt default sec 3.624 0.118 0.042 

n2n vbox host ping default ping1 1.797 0.395 0.141

n2n vbox host ping default ping2 0.407 0.015 0.005

n2n vbox host ttcpr 128mb bw 4649.025 32.881 11.766

n2n vbox host ttcpr 128mb bytes 134217728 0.000 N/A

n2n vbox host ttcpr 128mb sec 28.195 0.200 0.071 

n2n vbox host ttcpr 32mb bw 4648.668 56.538 20.232 

n2n vbox host ttcpr 32mb bytes INVALID INVALID INVALID

n2n vbox host ttcpr 32mb sec 6.581 1.224 0.438

n2n vbox host ttcpr 64mb bw 4658.930 35.582 12.732
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Net-
work 

Hyper-
visor 

Loc-
ation 

Bench-
mark Factor 

Exper-
iment 

Sample 
Mean Std Dev 95% CI 

n2n vbox host ttcpr 64mb bytes INVALID INVALID INVALID

n2n vbox host ttcpr 64mb sec 13.129 2.432 0.870

n2n vbox host ttcpr default bw 4660.709 58.431 20.909

n2n vbox host ttcpr default bytes 16777216 0.000 N/A

n2n vbox host ttcpr default sec 3.516 0.047 0.017 

n2n vbox host ttcpt 128mb bw 4678.980 36.049 12.900 

n2n vbox host ttcpt 128mb bytes 134217728 0.000 N/A

n2n vbox host ttcpt 128mb sec 28.015 0.216 0.077

n2n vbox host ttcpt 32mb bw 4743.242 48.717 17.433

n2n vbox host ttcpt 32mb bytes 33554432 0.000 N/A

n2n vbox host ttcpt 32mb sec 6.909 0.071 0.026 

n2n vbox host ttcpt 64mb bw 4720.416 33.179 11.873 

n2n vbox host ttcpt 64mb bytes 67108864 0.000 N/A

n2n vbox host ttcpt 64mb sec 13.883 0.098 0.035

n2n vbox host ttcpt default bw 4823.769 54.329 19.441

n2n vbox host ttcpt default bytes 16777216 0.000 N/A

n2n vbox host ttcpt default sec 3.397 0.038 0.014 

n2n vbox vm ping default ping1 2.807 0.882 0.316 

n2n vbox vm ping default ping2 0.735 0.214 0.076

n2n vbox vm ttcpr 128mb bw 2546.520 69.183 24.756

n2n vbox vm ttcpr 128mb bytes 134217728 0.000 N/A

n2n vbox vm ttcpr 128mb sec 51.509 1.456 0.521

n2n vbox vm ttcpr 32mb bw 2689.137 144.465 51.695 

n2n vbox vm ttcpr 32mb bytes 33554432 0.000 N/A 

n2n vbox vm ttcpr 32mb sec 12.222 0.702 0.251

n2n vbox vm ttcpr 64mb bw 2589.402 203.164 72.700

n2n vbox vm ttcpr 64mb bytes 67108864 0.000 N/A

n2n vbox vm ttcpr 64mb sec 25.466 2.061 0.738

n2n vbox vm ttcpr default bw 2483.974 363.344 130.018 

n2n vbox vm ttcpr default bytes 16777216 0.000 N/A 

n2n vbox vm ttcpr default sec 6.747 1.067 0.382

n2n vbox vm ttcpt 128mb bw 2551.549 71.030 25.417

n2n vbox vm ttcpt 128mb bytes 134217728 0.000 N/A

n2n vbox vm ttcpt 128mb sec 51.410 1.492 0.534

n2n vbox vm ttcpt 32mb bw 2710.288 152.979 54.742 

n2n vbox vm ttcpt 32mb bytes 33554432 0.000 N/A 

n2n vbox vm ttcpt 32mb sec 12.130 0.737 0.264

n2n vbox vm ttcpt 64mb bw 2598.151 208.680 74.674

n2n vbox vm ttcpt 64mb bytes 67108864 0.000 N/A

n2n vbox vm ttcpt 64mb sec 25.387 2.108 0.754

n2n vbox vm ttcpt default bw 2515.330 386.338 138.247 

n2n vbox vm ttcpt default bytes 16777216 0.000 N/A 

n2n vbox vm ttcpt default sec 6.679 1.112 0.398

n2n xen host ping default ping1 4.574 0.332 0.119

n2n xen host ping default ping2 0.449 0.017 0.006
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work 

Hyper-
visor 

Loc-
ation 

Bench-
mark Factor 

Exper-
iment 

Sample 
Mean Std Dev 95% CI 

n2n xen host ttcpr 128MB bw 4408.448 18.826 6.737

n2n xen host ttcpr 128MB bytes 134217728 0.000 N/A

n2n xen host ttcpr 128MB sec 29.733 0.128 0.046

n2n xen host ttcpr 32MB bw 4397.397 18.476 6.612

n2n xen host ttcpr 32MB bytes 33554432 0.000 N/A 

n2n xen host ttcpr 32MB sec 7.451 0.031 0.011 

n2n xen host ttcpr 64MB bw 4395.922 18.730 6.702

n2n xen host ttcpr 64MB bytes 67108864 0.000 N/A

n2n xen host ttcpr 64MB sec 14.908 0.062 0.022

n2n xen host ttcpr default bw 4381.373 18.291 6.545

n2n xen host ttcpr default bytes 16777216 0.000 N/A 

n2n xen host ttcpr default sec 3.739 0.016 0.006 

n2n xen host ttcpt 128mb bw 4482.822 22.005 7.874

n2n xen host ttcpt 128mb bytes 134217728 0.000 N/A

n2n xen host ttcpt 128mb sec 29.239 0.144 0.051

n2n xen host ttcpt 32mb bw 4682.886 37.381 13.376

n2n xen host ttcpt 32mb bytes 33554432 0.000 N/A 

n2n xen host ttcpt 32mb sec 6.997 0.056 0.020 

n2n xen host ttcpt 64mb bw 4554.588 21.631 7.740

n2n xen host ttcpt 64mb bytes 67108864 0.000 N/A

n2n xen host ttcpt 64mb sec 14.389 0.069 0.025

n2n xen host ttcpt default bw 4771.723 59.672 21.353

n2n xen host ttcpt default bytes 16777216 0.000 N/A 

n2n xen host ttcpt default sec 3.434 0.042 0.015 

n2n xen vm ping default ping1 2.691 0.216 0.077

n2n xen vm ping default ping2 0.482 0.015 0.005

n2n xen vm ttcpr 128mb bw 3965.723 20.360 7.286

n2n xen vm ttcpr 128mb bytes 134217728 0.000 N/A

n2n xen vm ttcpr 128mb sec 33.052 0.171 0.061 

n2n xen vm ttcpr 32mb bw 4000.860 7.911 2.831 

n2n xen vm ttcpr 32mb bytes 33554432 0.000 N/A

n2n xen vm ttcpr 32mb sec 8.191 0.016 0.006

n2n xen vm ttcpr 64mb bw 3986.474 12.917 4.622

n2n xen vm ttcpr 64mb bytes 67108864 0.000 N/A

n2n xen vm ttcpr 64mb sec 16.440 0.053 0.019 

n2n xen vm ttcpr default bw 4027.671 37.374 13.374 

n2n xen vm ttcpr default bytes 16777216 0.000 N/A

n2n xen vm ttcpr default sec 4.068 0.036 0.013

n2n xen vm ttcpt 128mb bw 3981.741 21.017 7.521

n2n xen vm ttcpt 128mb bytes 134217728 0.000 N/A

n2n xen vm ttcpt 128mb sec 32.920 0.175 0.063 

n2n xen vm ttcpt 32mb bw 4065.402 11.683 4.180 

n2n xen vm ttcpt 32mb bytes 33554432 0.000 N/A

n2n xen vm ttcpt 32mb sec 8.060 0.023 0.008

n2n xen vm ttcpt 64mb bw 4017.826 13.763 4.925
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ation 
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Exper-
iment 

Sample 
Mean Std Dev 95% CI 

n2n xen vm ttcpt 64mb bytes 67108864 0.000 N/A

n2n xen vm ttcpt 64mb sec 16.312 0.056 0.020

n2n xen vm ttcpt default bw 4161.178 52.310 18.719

n2n xen vm ttcpt default bytes 16777216 0.000 N/A

n2n xen vm ttcpt default sec 3.937 0.049 0.017 
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